Ying Li , Shiang Wang , Gaiping Li , Chi Zhang , Lina Zou
{"title":"A signal-on photoelectrochemical aptasensor based on WO3/CdS heterojunction for the ultrasensitive detection of kanamycin","authors":"Ying Li , Shiang Wang , Gaiping Li , Chi Zhang , Lina Zou","doi":"10.1016/j.bioelechem.2024.108828","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO<sub>3</sub>/CdS heterojunction as photoactive material. Firstly, WO<sub>3</sub>/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components. In the presence of the target KANA, it is specifically recognized and captured by the aptamers. More importantly, KANA can act as a signal amplifier to enhance the photocurrent due to the oxidation of KANA by photogenerated holes. Therefore, a signal-on PEC aptasensor based on WO<sub>3</sub>/CdS heterojunction with high selectivity was obtained for the detection of KANA. Under optimized experimental conditions, the PEC aptasensor demonstrated a wide linear range of 10 pM to 400 nM, with a detection limit of 6.77 pM. Meanwhile, the designed PEC aptasensor had been successfully utilized for the analytical examination of milk, fish, serum, and water samples.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"161 ","pages":"Article 108828"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567539424001907/pdfft?md5=2a8b0c46c2a381bf4dafb87327270136&pid=1-s2.0-S1567539424001907-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001907","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO3/CdS heterojunction as photoactive material. Firstly, WO3/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components. In the presence of the target KANA, it is specifically recognized and captured by the aptamers. More importantly, KANA can act as a signal amplifier to enhance the photocurrent due to the oxidation of KANA by photogenerated holes. Therefore, a signal-on PEC aptasensor based on WO3/CdS heterojunction with high selectivity was obtained for the detection of KANA. Under optimized experimental conditions, the PEC aptasensor demonstrated a wide linear range of 10 pM to 400 nM, with a detection limit of 6.77 pM. Meanwhile, the designed PEC aptasensor had been successfully utilized for the analytical examination of milk, fish, serum, and water samples.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.