Control factor optimization for friction stir processing of AA8090/SiC surface composites

Karthik Adiga, Mervin A. Herbert, Shrikantha S. Rao, Arun Kumar Shettigar
{"title":"Control factor optimization for friction stir processing of AA8090/SiC surface composites","authors":"Karthik Adiga,&nbsp;Mervin A. Herbert,&nbsp;Shrikantha S. Rao,&nbsp;Arun Kumar Shettigar","doi":"10.1016/j.jalmes.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><div>Friction Stir Processing is a state-of-the-art technology for microstructure refinement, material property enhancement, and surface composites fabrication. This investigation concentrates on AA8090/SiC surface composites produced via friction stir processing. Experiments were conducted by varying the following friction stir processing parameters: Tool rotational speed (800–1400 rpm), Tool traverse speed (25–75 mm/min), and Groove width (1.0–1.8 mm). Response measures encompassed Ultimate Tensile Strength and surface roughness. Central Composite Design of Response Surface Methodology designed the experiments and mathematical relationships established between input parameters and ultimate tensile strength and surface roughness. Analysis of variance was used to test the model's adequacy. The models examined individual and interaction effects of input factors on ultimate tensile strength and surface roughness of surface composites. A combinations of input parameters was identified that yields the maximum ultimate tensile strength and minimum surface roughness. The current work employs the friction stir processing approach to synthesis near-net-shaped surface composites without additional machining by systematically optimizing process parameters. Results indicate that increasing tool rotational speed produces well-finished AA8090/SiC surface composites with decreased strength. In contrast, increased tool traverse speed and groove width generate surface composites with rougher surfaces and higher strength. Surface and contour plots further explored the influence of parameter interactions on responses.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000531/pdfft?md5=02ef3a58d1cddc67b89348c63cfe45b2&pid=1-s2.0-S2949917824000531-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Friction Stir Processing is a state-of-the-art technology for microstructure refinement, material property enhancement, and surface composites fabrication. This investigation concentrates on AA8090/SiC surface composites produced via friction stir processing. Experiments were conducted by varying the following friction stir processing parameters: Tool rotational speed (800–1400 rpm), Tool traverse speed (25–75 mm/min), and Groove width (1.0–1.8 mm). Response measures encompassed Ultimate Tensile Strength and surface roughness. Central Composite Design of Response Surface Methodology designed the experiments and mathematical relationships established between input parameters and ultimate tensile strength and surface roughness. Analysis of variance was used to test the model's adequacy. The models examined individual and interaction effects of input factors on ultimate tensile strength and surface roughness of surface composites. A combinations of input parameters was identified that yields the maximum ultimate tensile strength and minimum surface roughness. The current work employs the friction stir processing approach to synthesis near-net-shaped surface composites without additional machining by systematically optimizing process parameters. Results indicate that increasing tool rotational speed produces well-finished AA8090/SiC surface composites with decreased strength. In contrast, increased tool traverse speed and groove width generate surface composites with rougher surfaces and higher strength. Surface and contour plots further explored the influence of parameter interactions on responses.
优化 AA8090/SiC 表面复合材料摩擦搅拌加工的控制因素
摩擦搅拌加工是一种先进的微结构细化、材料性能强化和表面复合材料制造技术。本研究主要针对通过搅拌摩擦加工生产的 AA8090/SiC 表面复合材料。实验通过改变以下搅拌摩擦加工参数进行:工具转速(800-1400 rpm)、工具移动速度(25-75 mm/min)和槽宽(1.0-1.8 mm)。响应测量包括极限拉伸强度和表面粗糙度。采用响应面方法的中心复合设计进行实验设计,并在输入参数与极限拉伸强度和表面粗糙度之间建立数学关系。方差分析用于检验模型的适当性。模型检验了输入因素对表面复合材料极限拉伸强度和表面粗糙度的单独效应和交互效应。最终确定了能产生最大极限拉伸强度和最小表面粗糙度的输入参数组合。目前的工作采用搅拌摩擦加工方法,通过系统优化工艺参数,在不进行额外加工的情况下合成近网状表面复合材料。结果表明,提高工具旋转速度可生产出加工良好的 AA8090/SiC 表面复合材料,但强度降低。与此相反,提高刀具移动速度和沟槽宽度可产生表面更粗糙、强度更高的表面复合材料。表面和轮廓图进一步探讨了参数相互作用对响应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信