Utilizing molecular simulation, ideal adsorbed solution theory and ensemble learning algorithms to investigate adsorption and separation of sulfides on amorphous nanoporous materials

Xuan Peng , Xingbang Zhang
{"title":"Utilizing molecular simulation, ideal adsorbed solution theory and ensemble learning algorithms to investigate adsorption and separation of sulfides on amorphous nanoporous materials","authors":"Xuan Peng ,&nbsp;Xingbang Zhang","doi":"10.1016/j.nxmate.2024.100378","DOIUrl":null,"url":null,"abstract":"<div><div>Using grand canonical Monte Carlo method, we investigated the adsorption of pure H<sub>2</sub>S and SO<sub>2</sub> gases on amorphous materials, and the separation of CH<sub>4</sub>-H<sub>2</sub>S and CO<sub>2</sub>-SO<sub>2</sub> mixtures. At 303 K, the optimal adsorbent for both gases was found to be HCP-Colina-id016, with 16 mmol/g. For CH<sub>4</sub>-H<sub>2</sub>S mixture, despite aCarbon-Marks-id002 exhibiting the highest selectivity (approximately 80), the H<sub>2</sub>S adsorption was low (around 1 mmol/g), while Kerogen-Coasne-id013 demonstrated a high H<sub>2</sub>S adsorption of 12 mmol/g with a selectivity of 20. In the case of CO<sub>2</sub>-SO<sub>2</sub>, HCP-Colina-id018 exhibited a SO<sub>2</sub> selectivity exceeding 30, with a high SO<sub>2</sub> adsorption of 12 mmol/g. The Ideal Adsorbed Solution Theory underestimated the adsorption and selectivity of both mixtures, particularly evident in CO<sub>2</sub>-SO<sub>2</sub>. Molecular simulations revealed that, for the CO<sub>2</sub>-SO<sub>2</sub> system, CO<sub>2</sub> underwent condensation, resulting in a sudden drop in the SO<sub>2</sub> adsorption isotherm. However, IAST accurately predicted this abrupt change. Based on the adsorption data obtained from molecular simulations, we compared the predictive performance of four ensemble learning algorithms, namely Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Extreme Gradient Boosting (XGBoost), and CatBoost, for H<sub>2</sub>S and SO<sub>2</sub> pure gases in amorphous porous materials. The rankings were observed to be XGBoost &gt; GBDT &gt; RF &gt; CatBoost.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100378"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949822824002752/pdfft?md5=1a38fd74867aa058439d0dbdc8637e20&pid=1-s2.0-S2949822824002752-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824002752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using grand canonical Monte Carlo method, we investigated the adsorption of pure H2S and SO2 gases on amorphous materials, and the separation of CH4-H2S and CO2-SO2 mixtures. At 303 K, the optimal adsorbent for both gases was found to be HCP-Colina-id016, with 16 mmol/g. For CH4-H2S mixture, despite aCarbon-Marks-id002 exhibiting the highest selectivity (approximately 80), the H2S adsorption was low (around 1 mmol/g), while Kerogen-Coasne-id013 demonstrated a high H2S adsorption of 12 mmol/g with a selectivity of 20. In the case of CO2-SO2, HCP-Colina-id018 exhibited a SO2 selectivity exceeding 30, with a high SO2 adsorption of 12 mmol/g. The Ideal Adsorbed Solution Theory underestimated the adsorption and selectivity of both mixtures, particularly evident in CO2-SO2. Molecular simulations revealed that, for the CO2-SO2 system, CO2 underwent condensation, resulting in a sudden drop in the SO2 adsorption isotherm. However, IAST accurately predicted this abrupt change. Based on the adsorption data obtained from molecular simulations, we compared the predictive performance of four ensemble learning algorithms, namely Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Extreme Gradient Boosting (XGBoost), and CatBoost, for H2S and SO2 pure gases in amorphous porous materials. The rankings were observed to be XGBoost > GBDT > RF > CatBoost.
利用分子模拟、理想吸附溶液理论和集合学习算法研究硫化物在无定形纳米多孔材料上的吸附和分离问题
我们采用大规范蒙特卡洛法研究了非晶材料对纯 H2S 和 SO2 气体的吸附,以及 CH4-H2S 和 CO2-SO2 混合物的分离。在 303 K 条件下,两种气体的最佳吸附剂均为 HCP-Colina-id016,吸附量为 16 mmol/g。对于 CH4-H2S 混合物,尽管 aCarbon-Marks-id002 的选择性最高(约 80),但 H2S 吸附量较低(约 1 mmol/g),而 Kerogen-Coasne-id013 的 H2S 吸附量较高,为 12 mmol/g,选择性为 20。在 CO2-SO2 的情况下,HCP-Colina-id018 对 SO2 的选择性超过 30,对 SO2 的吸附量高达 12 mmol/g。理想吸附溶液理论低估了这两种混合物的吸附性和选择性,这在 CO2-SO2 中尤为明显。分子模拟显示,在 CO2-SO2 系统中,CO2 发生冷凝,导致 SO2 吸附等温线突然下降。然而,IAST 准确地预测了这一突然变化。根据分子模拟获得的吸附数据,我们比较了随机森林(RF)、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)和 CatBoost 四种集合学习算法对非晶多孔材料中 H2S 和 SO2 纯气体的预测性能。结果表明,XGBoost > GBDT > RF > CatBoost 的排名是:XGBoost > GBDT > RF > CatBoost。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信