Shiwei Jiang , Xin Zhou , Jasper F. Kok , Qifan Lin , Yonggang Liu , Tao Zhan , Yanan Shen , Zhibo Li , Xuanqiao Liu , Anze Chen , Luo Wang , Wen Chen , John P. Smol , Zhengtang Guo
{"title":"Enhanced global dust counteracted greenhouse warming during the mid- to late-Holocene","authors":"Shiwei Jiang , Xin Zhou , Jasper F. Kok , Qifan Lin , Yonggang Liu , Tao Zhan , Yanan Shen , Zhibo Li , Xuanqiao Liu , Anze Chen , Luo Wang , Wen Chen , John P. Smol , Zhengtang Guo","doi":"10.1016/j.earscirev.2024.104937","DOIUrl":null,"url":null,"abstract":"<div><div>Known as the “Holocene temperature conundrum,” controversy remains between paleoclimate reconstructions indicating cooling during the late-Holocene versus model simulations indicating warming. Here, we present a composite Holocene winter temperature index record derived from East Asian winter monsoon (EAWM) reconstructions. This new temperature index record documents a thermal maximum occurring during the mid-Holocene, followed by a cooling trend. Along with other Holocene winter temperature reconstructions, these findings collectively indicate a cooling trend during the late-Holocene, consistent with global annual average temperature reconstructions. Notably, our composite dust records and dust sensitivity simulations identified enhanced global aeolian dust, which has been overlooked in previous model simulations, as a likely driver of the cooling trend throughout the mid- to late-Holocene. Our new evidence does not support the current seasonal bias explanation of the Holocene temperature controversy, but instead suggests potential mechanisms that could help explain the differences between temperatures inferred from models and paleo-reconstructions in the past.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104937"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224002654","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Known as the “Holocene temperature conundrum,” controversy remains between paleoclimate reconstructions indicating cooling during the late-Holocene versus model simulations indicating warming. Here, we present a composite Holocene winter temperature index record derived from East Asian winter monsoon (EAWM) reconstructions. This new temperature index record documents a thermal maximum occurring during the mid-Holocene, followed by a cooling trend. Along with other Holocene winter temperature reconstructions, these findings collectively indicate a cooling trend during the late-Holocene, consistent with global annual average temperature reconstructions. Notably, our composite dust records and dust sensitivity simulations identified enhanced global aeolian dust, which has been overlooked in previous model simulations, as a likely driver of the cooling trend throughout the mid- to late-Holocene. Our new evidence does not support the current seasonal bias explanation of the Holocene temperature controversy, but instead suggests potential mechanisms that could help explain the differences between temperatures inferred from models and paleo-reconstructions in the past.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.