On the locally self-similar blowup for the generalized SQG equation

IF 2.4 2区 数学 Q1 MATHEMATICS
Anne Bronzi , Ricardo Guimarães , Cecilia Mondaini
{"title":"On the locally self-similar blowup for the generalized SQG equation","authors":"Anne Bronzi ,&nbsp;Ricardo Guimarães ,&nbsp;Cecilia Mondaini","doi":"10.1016/j.jde.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze finite-time blowup scenarios of locally self-similar type for the inviscid generalized surface quasi-geostrophic equation (gSQG) in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Under an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> growth assumption on the self-similar profile and its gradient, we identify appropriate ranges of the self-similar parameter where the profile is either identically zero, and hence blowup cannot occur, or its <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> asymptotic behavior can be characterized, for suitable <span><math><mi>r</mi><mo>,</mo><mi>p</mi></math></span>. Our results extend the work by Xue <span><span>[38]</span></span> regarding the SQG equation, and also partially recover the results proved by Cannone and Xue <span><span>[3]</span></span> concerning globally self-similar solutions of the gSQG equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze finite-time blowup scenarios of locally self-similar type for the inviscid generalized surface quasi-geostrophic equation (gSQG) in R2. Under an Lr growth assumption on the self-similar profile and its gradient, we identify appropriate ranges of the self-similar parameter where the profile is either identically zero, and hence blowup cannot occur, or its Lp asymptotic behavior can be characterized, for suitable r,p. Our results extend the work by Xue [38] regarding the SQG equation, and also partially recover the results proved by Cannone and Xue [3] concerning globally self-similar solutions of the gSQG equation.
论广义 SQG方程的局部自相似膨胀
我们分析了 R2 中不粘性广义表面准地转方程(gSQG)的局部自相似型有限时间炸裂情形。在自相似剖面及其梯度的 Lr 增长假设下,我们确定了自相似参数的适当范围,在这些范围内,对于合适的 r,p,剖面要么为完全相同的零,因此不会发生炸裂,要么可以描述其 Lp 渐近行为。我们的结果扩展了 Xue [38] 关于 SQG 方程的研究,也部分恢复了 Cannone 和 Xue [3] 关于 gSQG 方程全局自相似解的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信