Hybrid modelling of dynamic softening using modified Avrami kinetics under Gaussian processes

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Hybrid modelling of dynamic softening using modified Avrami kinetics under Gaussian processes","authors":"","doi":"10.1016/j.mechmat.2024.105153","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a new method of modelling that combines several approaches to anticipate the softening of nickel-niobium alloys during dynamic recrystallization (DRX). The study employs an extensive dataset obtained from hot torsion deformation tests conducted on high-purity nickel and six nickel-niobium alloys. The niobium concentration in these alloys varies from 0.01 to 10 wt % (Matougui et al., 2013). The hybrid technique integrates the Avrami model to provide early predictions about the kinetics of recrystallization and then uses mechanistic modelling to assess the progression of softening caused by dynamic recrystallization (DRX). The integrated technique is improved by using Gaussian process regression analysis, which investigates the softening properties and offers useful insights into the effects of niobium additions on dynamic softening behaviour. This unique hybrid framework combines multiple modelling tools to reveal intricate connections impacted by solute addition, therefore enhancing our comprehension of the physical events that take place during the hot deformation of superalloys. The use of empirical, mechanistic, and machine learning methods in this hybrid model provides a more thorough and detailed investigation of DRX processes in these alloys.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016766362400245X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new method of modelling that combines several approaches to anticipate the softening of nickel-niobium alloys during dynamic recrystallization (DRX). The study employs an extensive dataset obtained from hot torsion deformation tests conducted on high-purity nickel and six nickel-niobium alloys. The niobium concentration in these alloys varies from 0.01 to 10 wt % (Matougui et al., 2013). The hybrid technique integrates the Avrami model to provide early predictions about the kinetics of recrystallization and then uses mechanistic modelling to assess the progression of softening caused by dynamic recrystallization (DRX). The integrated technique is improved by using Gaussian process regression analysis, which investigates the softening properties and offers useful insights into the effects of niobium additions on dynamic softening behaviour. This unique hybrid framework combines multiple modelling tools to reveal intricate connections impacted by solute addition, therefore enhancing our comprehension of the physical events that take place during the hot deformation of superalloys. The use of empirical, mechanistic, and machine learning methods in this hybrid model provides a more thorough and detailed investigation of DRX processes in these alloys.

Abstract Image

利用改良阿夫拉米动力学建立高斯过程下动态软化的混合模型
本文介绍了一种新的建模方法,它结合了多种方法来预测镍铌合金在动态再结晶(DRX)过程中的软化。该研究采用了从对高纯度镍和六种镍铌合金进行的热扭转变形测试中获得的大量数据集。这些合金中的铌浓度从 0.01 到 10 wt % 不等(Matougui 等人,2013 年)。该混合技术集成了阿夫拉米模型,可提供有关再结晶动力学的早期预测,然后使用力学建模来评估动态再结晶 (DRX) 引起的软化过程。通过使用高斯过程回归分析改进了这一综合技术,该分析可研究软化特性,并就铌添加对动态软化行为的影响提供有用的见解。这种独特的混合框架结合了多种建模工具,揭示了受溶质添加影响的错综复杂的联系,从而增强了我们对超耐热合金热变形过程中发生的物理事件的理解。在这个混合模型中使用了经验、机械和机器学习方法,对这些合金中的 DRX 过程进行了更深入、更详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信