Ziaur Rahman , Tao Yin , Ramy M. Khoder , Abroo Tabasum , Qilin Huang , Juan You , Huawei Ma , Ru Liu , Shanbai Xiong
{"title":"Insight into the mechanism on nano fish bone improving the quality of marinated snakehead fish slices during freeze-thaw cycles","authors":"Ziaur Rahman , Tao Yin , Ramy M. Khoder , Abroo Tabasum , Qilin Huang , Juan You , Huawei Ma , Ru Liu , Shanbai Xiong","doi":"10.1016/j.ifset.2024.103821","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of marinating with nano fish bone (NFB) on the physicochemical characteristics and quality of snakehead fish slices during freeze-thaw cycles (1, 3, 5, 7, and 9) were investigated. The highest alterations in surface hydrophobicity, carbonyl content and secondary structure of the slice myofibrillar protein, integrity of cellular structure, and slice quality (whiteness, thawing loss, cooking loss, and sensory) were found in the sample without cryoprotectant (Ck), followed by the sample with commercial cryoprotectant of polyphosphates (PPS), and the lowest in the NFB sample. Comparatively, more moisture but less free water was observed in the NFB sample during the freeze-thaw cycles. Furthermore, NFB surrounded the oil droplet to form a Pickering emulsion, resulting in the stabilization of oil in the marinade. The results indicated that NFB can serve as a potential alternative to commercial cryoprotectant in frozen fish slices, which is attributed to its antifreeze and antioxidant functionalities.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103821"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002601","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of marinating with nano fish bone (NFB) on the physicochemical characteristics and quality of snakehead fish slices during freeze-thaw cycles (1, 3, 5, 7, and 9) were investigated. The highest alterations in surface hydrophobicity, carbonyl content and secondary structure of the slice myofibrillar protein, integrity of cellular structure, and slice quality (whiteness, thawing loss, cooking loss, and sensory) were found in the sample without cryoprotectant (Ck), followed by the sample with commercial cryoprotectant of polyphosphates (PPS), and the lowest in the NFB sample. Comparatively, more moisture but less free water was observed in the NFB sample during the freeze-thaw cycles. Furthermore, NFB surrounded the oil droplet to form a Pickering emulsion, resulting in the stabilization of oil in the marinade. The results indicated that NFB can serve as a potential alternative to commercial cryoprotectant in frozen fish slices, which is attributed to its antifreeze and antioxidant functionalities.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.