Strong convergence of multi-scale stochastic differential equations with a full dependence

Pub Date : 2024-09-12 DOI:10.1016/j.spl.2024.110271
Qing Ji, Jicheng Liu
{"title":"Strong convergence of multi-scale stochastic differential equations with a full dependence","authors":"Qing Ji,&nbsp;Jicheng Liu","doi":"10.1016/j.spl.2024.110271","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the strong convergence of multi-scale stochastic differential equations, where diffusion coefficient of the slow component depends on fast process. In this situation, it is well-known that strong convergence in the averaging principle does not hold in general.</div><div>We propose a new approximation equation, and prove that the order of strong convergence is <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> via the technique of Poisson equation. In particular, when diffusion coefficient of the slow component does not depend on fast process, the approximation equation is exactly the averaged equation. This provides us a new perspective to study the strong convergence of multi-scale stochastic differential equations with a full dependence.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002402/pdfft?md5=1f5c94c984da3d5719454d4932269d22&pid=1-s2.0-S0167715224002402-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the strong convergence of multi-scale stochastic differential equations, where diffusion coefficient of the slow component depends on fast process. In this situation, it is well-known that strong convergence in the averaging principle does not hold in general.
We propose a new approximation equation, and prove that the order of strong convergence is 1/2 via the technique of Poisson equation. In particular, when diffusion coefficient of the slow component does not depend on fast process, the approximation equation is exactly the averaged equation. This provides us a new perspective to study the strong convergence of multi-scale stochastic differential equations with a full dependence.
分享
查看原文
具有完全依赖性的多尺度随机微分方程的强收敛性
本文考虑了多尺度随机微分方程的强收敛问题,其中慢分量的扩散系数取决于快过程。我们提出了一个新的近似方程,并通过泊松方程技术证明了强收敛阶数为 1/2。我们提出了新的近似方程,并通过泊松方程技术证明了强收敛阶数为 1/2。特别是,当慢速分量的扩散系数不依赖于快速过程时,近似方程正是平均方程。这为我们研究具有完全依赖性的多尺度随机微分方程的强收敛性提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信