Impact of Interfacial Disorder and Band Structure on the Resonant Conductance Oscillation in Quantum-Well-Based Magnetic Tunnel Junctions

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tianyi Ma, Bingshan Tao, Xavier Devaux, Hongxin Yang, Yalu Zuo, Sylvie Migot, Oleg Kurnosikov, Michel Vergnat, Xiufeng Han* and Yuan Lu*, 
{"title":"Impact of Interfacial Disorder and Band Structure on the Resonant Conductance Oscillation in Quantum-Well-Based Magnetic Tunnel Junctions","authors":"Tianyi Ma,&nbsp;Bingshan Tao,&nbsp;Xavier Devaux,&nbsp;Hongxin Yang,&nbsp;Yalu Zuo,&nbsp;Sylvie Migot,&nbsp;Oleg Kurnosikov,&nbsp;Michel Vergnat,&nbsp;Xiufeng Han* and Yuan Lu*,&nbsp;","doi":"10.1021/acsaelm.4c0120210.1021/acsaelm.4c01202","DOIUrl":null,"url":null,"abstract":"<p >Quantum well (QW) states formed in a double-barrier magnetic tunnel junction (DMTJ) enable the coherent resonant tunneling of electrons. This phenomenon is significant for both the fundamental understanding of quantum transport and the development of advanced functionalities in spintronic devices. Careful engineering of the structural and chemical disorders at the QW/barrier interface is essential to maintain strong electron phase coherence, thereby ensuring reliable conductance oscillations in DMTJ. In this study, we systematically investigate the influence of interfacial disorders and band structure on QW-induced conductance oscillations in epitaxial Fe/MgAlO<sub><i>x</i></sub>/Fe (QW)/MgAlO<sub><i>x</i></sub>/Co/Fe DMTJs grown by molecular beam epitaxy. It is found that the amplitude of QW oscillations is reduced to one-third due to chemical disorders caused by the incorporation of 2–4 monolayers of Co at the Fe (QW)/MgAlO<sub><i>x</i></sub> interface. In contrast, structural disorder induced by the incorporation of a single Fe monolayer completely suppresses the oscillations. In addition, the QW oscillation depends on the available majority Δ<sub>1</sub> states of the injecting electrons at the Fermi level (<i>E</i><sub>F</sub>) with <i>k</i><sub>//</sub> = 0 from the upper electrode. Replacing the Fe upper electrode with Fe<sub>4</sub>N, which lacks a majority of Δ<sub>1</sub> states at <i>E</i><sub>F</sub>, significantly reduces the oscillation amplitude. Instead, using the bcc Co upper electrode, which possesses majority Δ<sub>1</sub> states, results in no change in QW oscillation. Our findings highlight the critical role of interfacial disorder and band structure in QW-induced conductance oscillations, advancing the development of spin-dependent quantum resonant tunneling applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01202","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum well (QW) states formed in a double-barrier magnetic tunnel junction (DMTJ) enable the coherent resonant tunneling of electrons. This phenomenon is significant for both the fundamental understanding of quantum transport and the development of advanced functionalities in spintronic devices. Careful engineering of the structural and chemical disorders at the QW/barrier interface is essential to maintain strong electron phase coherence, thereby ensuring reliable conductance oscillations in DMTJ. In this study, we systematically investigate the influence of interfacial disorders and band structure on QW-induced conductance oscillations in epitaxial Fe/MgAlOx/Fe (QW)/MgAlOx/Co/Fe DMTJs grown by molecular beam epitaxy. It is found that the amplitude of QW oscillations is reduced to one-third due to chemical disorders caused by the incorporation of 2–4 monolayers of Co at the Fe (QW)/MgAlOx interface. In contrast, structural disorder induced by the incorporation of a single Fe monolayer completely suppresses the oscillations. In addition, the QW oscillation depends on the available majority Δ1 states of the injecting electrons at the Fermi level (EF) with k// = 0 from the upper electrode. Replacing the Fe upper electrode with Fe4N, which lacks a majority of Δ1 states at EF, significantly reduces the oscillation amplitude. Instead, using the bcc Co upper electrode, which possesses majority Δ1 states, results in no change in QW oscillation. Our findings highlight the critical role of interfacial disorder and band structure in QW-induced conductance oscillations, advancing the development of spin-dependent quantum resonant tunneling applications.

Abstract Image

界面紊乱和带状结构对量子井基磁性隧道结中共振电导振荡的影响
在双势垒磁隧道结(DMTJ)中形成的量子阱(QW)态能够实现电子的相干共振隧道传输。这一现象对量子传输的基本理解和自旋电子器件先进功能的开发都具有重要意义。要保持电子相位的强相干性,从而确保 DMTJ 的可靠电导振荡,就必须对 QW/势垒界面的结构和化学紊乱进行精心设计。在本研究中,我们系统地研究了通过分子束外延生长的外延 Fe/MgAlOx/Fe(QW)/MgAlOx/Co/Fe DMTJ 中界面紊乱和能带结构对 QW 诱导的电导振荡的影响。研究发现,由于在 Fe (QW)/MgAlOx 界面加入了 2-4 个单层 Co 而导致化学紊乱,QW 振荡的振幅减小到三分之一。相比之下,单个铁单层的加入所引起的结构紊乱则完全抑制了振荡。此外,QW 振荡取决于从上电极注入费米级(EF)(k// = 0)电子的可用多数Δ1 态。用 Fe4N 代替 Fe 上电极会显著降低振荡幅度,因为 Fe4N 在费米级缺乏多数Δ1 态。相反,使用具有多数Δ1态的共晶钴上电极则不会改变 QW 的振荡。我们的研究结果凸显了界面无序和能带结构在 QW 诱导的电导振荡中的关键作用,推动了自旋相关量子共振隧道应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信