{"title":"Direct Unconstrained Optimization of Molecular Orbital Coefficients in Density Functional Theory","authors":"Hanh D. M. Pham, and , Rustam Z. Khaliullin*, ","doi":"10.1021/acs.jctc.4c0069610.1021/acs.jctc.4c00696","DOIUrl":null,"url":null,"abstract":"<p >One-electron orbitals in Kohn–Sham density functional theory (DFT) are typically constrained to be orthogonal during their variational optimization, leading to elaborate parameterization of the orbitals and complicated optimization algorithms. This work shows that orbital optimization can be performed with nonorthogonal orbitals if the DFT energy functional is augmented with a term that penalizes linearly dependent states. This approach, called variable-metric self-consistent field (VM SCF) optimization, allows us to use molecular orbital coefficients, natural descriptors of one-electron orbitals, as independent variables in a direct, unconstrained minimization, leading to very simple closed-form expressions for the electronic gradient and Hessian. It is demonstrated that efficient convergence of the VM SCF procedure can be achieved with a basic preconditioned conjugate gradient algorithm for a variety of systems, including challenging narrow-gap systems and spin-pure two-determinant states of singlet diradicals. This simple reformulation of the variational procedure can be readily extended to electron correlation methods with multiconfiguration states and to the optimization of excited-state orbitals.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00696","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One-electron orbitals in Kohn–Sham density functional theory (DFT) are typically constrained to be orthogonal during their variational optimization, leading to elaborate parameterization of the orbitals and complicated optimization algorithms. This work shows that orbital optimization can be performed with nonorthogonal orbitals if the DFT energy functional is augmented with a term that penalizes linearly dependent states. This approach, called variable-metric self-consistent field (VM SCF) optimization, allows us to use molecular orbital coefficients, natural descriptors of one-electron orbitals, as independent variables in a direct, unconstrained minimization, leading to very simple closed-form expressions for the electronic gradient and Hessian. It is demonstrated that efficient convergence of the VM SCF procedure can be achieved with a basic preconditioned conjugate gradient algorithm for a variety of systems, including challenging narrow-gap systems and spin-pure two-determinant states of singlet diradicals. This simple reformulation of the variational procedure can be readily extended to electron correlation methods with multiconfiguration states and to the optimization of excited-state orbitals.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.