Noninvasive Detection of the Skin Structure and Inversed Retrieval of Chromophore Information Based on Diffuse Reflectance Spectroscopy.

Journal of biophotonics Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI:10.1002/jbio.202400118
Jinyao Wang, Dong Li, Bin Chen
{"title":"Noninvasive Detection of the Skin Structure and Inversed Retrieval of Chromophore Information Based on Diffuse Reflectance Spectroscopy.","authors":"Jinyao Wang, Dong Li, Bin Chen","doi":"10.1002/jbio.202400118","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of skin's structure lays the foundation for personalized laser surgery of vascular skin disease, which can be noninvasively achieved by diffuse reflectance spectroscopy (DRS). A two-step inverse Monte Carlo radiation method based on DRS under two source-detector separations was proposed to quantify the skin structure, including chromophore concentration (melanin f <sub>m</sub> and hemoglobin f <sub>b</sub>), epidermal thickness t <sub>epi</sub>, average vessel diameter D <sub>ves</sub>, depth d <sub>pws</sub> and thickness t <sub>pws</sub> of the vascular layer for diseased skin. The method fitted the simulated DRS to the measured DRS iteratively, differences between which were described by a specific objective function to amplify blood absorption at 500-600 nm, and D <sub>ves</sub>, d <sub>pws</sub>, and t <sub>pws</sub> were estimated based on f <sub>m</sub>, f <sub>b</sub>, and t <sub>pws</sub> fitted in the first step. The results showed that the two-step method dramatically improve the inversion accuracy with mean errors of f <sub>m</sub>, f <sub>b</sub>, t <sub>pws</sub>, and d <sub>pws</sub> less than 5%.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of skin's structure lays the foundation for personalized laser surgery of vascular skin disease, which can be noninvasively achieved by diffuse reflectance spectroscopy (DRS). A two-step inverse Monte Carlo radiation method based on DRS under two source-detector separations was proposed to quantify the skin structure, including chromophore concentration (melanin f m and hemoglobin f b), epidermal thickness t epi, average vessel diameter D ves, depth d pws and thickness t pws of the vascular layer for diseased skin. The method fitted the simulated DRS to the measured DRS iteratively, differences between which were described by a specific objective function to amplify blood absorption at 500-600 nm, and D ves, d pws, and t pws were estimated based on f m, f b, and t pws fitted in the first step. The results showed that the two-step method dramatically improve the inversion accuracy with mean errors of f m, f b, t pws, and d pws less than 5%.

基于漫反射光谱的皮肤结构无创检测和色素信息反向检索。
皮肤结构的检测为血管性皮肤病的个性化激光手术奠定了基础,而皮肤结构的检测可通过漫反射光谱(DRS)无创实现。研究人员提出了一种基于两个光源-探测器分离条件下 DRS 的两步逆蒙特卡罗辐射方法,用于量化皮肤结构,包括病变皮肤的发色团浓度(黑色素 fm 和血红蛋白 fb)、表皮厚度 tepi、血管平均直径 Dves、深度 dpws 和血管层厚度 tpws。该方法将模拟 DRS 与测量的 DRS 反复拟合,两者之间的差异由特定的目标函数描述,以放大 500-600 纳米波长处的血液吸收,并根据第一步拟合的 fm、fb 和 tpws 估算 Dves、dpws 和 tpws。结果表明,两步法显著提高了反演精度,fm、fb、tpws 和 dpws 的平均误差均小于 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信