{"title":"A Multi-Bit ECRAM-Based Analog Neuromorphic System With High-Precision Current Readout Achieving 97.3% Inference Accuracy","authors":"Minseong Um;Minil Kang;Kyeongho Eom;Hyunjeong Kwak;Kyungmi Noh;Jimin Lee;Jeonghoon Son;Jiseok Kwon;Seyoung Kim;Hyung-Min Lee","doi":"10.1109/TBCAS.2024.3465610","DOIUrl":null,"url":null,"abstract":"This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 × 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 × 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 × 10) mapped to the ECRAM.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 3","pages":"590-604"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685457/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 × 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 × 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 × 10) mapped to the ECRAM.