Virtual screening study for biological activity assessment and metabolism pathway of a fuel dye in airborne exposure scenario.

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Sayed Vahid Esmaeili, Ali Alboghobeish, Vafa Feyzi, Fatemeh Ravannakhjavani, Rezvan Zendehdel
{"title":"Virtual screening study for biological activity assessment and metabolism pathway of a fuel dye in airborne exposure scenario.","authors":"Sayed Vahid Esmaeili, Ali Alboghobeish, Vafa Feyzi, Fatemeh Ravannakhjavani, Rezvan Zendehdel","doi":"10.1177/07482337241286187","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of synthetic dyes increases the risk to human health. Despite the progress of information on azo dyes, very little attention has been reported on toxicity assessment of anthraquinone dyes. Solvent Blue 35 (SB35) is one of the anthraquinone dyes likely to be encountered because of its increasing use in various industries. Whereas the design of laboratory tests is very expensive, in silico screening was used to predict the metabolic profile and toxicity effect of SB35. MetaTox software was used to predict the metabolites of phase I and II in two layers. Since airborne exposure has been considered, the pathways of inhalation and dermal absorption of SB35 were investigated through the SwissADME model based on the modified Lipinski's rule of five. To predict the biological effect and toxicity of SB35 and each of the metabolites, PASS online software was used. Chemical activity was considered according to the probability of activation values (Pa) higher than the probability of inactivation values (Pi). N- dealkylation of SB35 was predicted in the first layer, while seven active compounds were obtained in the second layer from phases I and II reactions. Investigating the physicochemical properties of SB35 confirmed inhalation absorption for occupational exposure scenarios. All metabolites are absorbed from intestinal routes based on the RO5 rules. SB35 and their metabolites have an effective substrate role for the sub-type of CYP 450 enzymes. The toxicity effect of carcinogenicity for SB35 and mutagenicity for metabolites are predicted while confirmed with some biological effects. However, reproductive disorders are pointed with SB35 by probability higher than 70%. Virtual screening methods are efficient tools for creating cost-effective predictions in the hazard's evaluation of SB35. However, a perspective view is suggested before decision-making for laboratory designing tests.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337241286187","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of synthetic dyes increases the risk to human health. Despite the progress of information on azo dyes, very little attention has been reported on toxicity assessment of anthraquinone dyes. Solvent Blue 35 (SB35) is one of the anthraquinone dyes likely to be encountered because of its increasing use in various industries. Whereas the design of laboratory tests is very expensive, in silico screening was used to predict the metabolic profile and toxicity effect of SB35. MetaTox software was used to predict the metabolites of phase I and II in two layers. Since airborne exposure has been considered, the pathways of inhalation and dermal absorption of SB35 were investigated through the SwissADME model based on the modified Lipinski's rule of five. To predict the biological effect and toxicity of SB35 and each of the metabolites, PASS online software was used. Chemical activity was considered according to the probability of activation values (Pa) higher than the probability of inactivation values (Pi). N- dealkylation of SB35 was predicted in the first layer, while seven active compounds were obtained in the second layer from phases I and II reactions. Investigating the physicochemical properties of SB35 confirmed inhalation absorption for occupational exposure scenarios. All metabolites are absorbed from intestinal routes based on the RO5 rules. SB35 and their metabolites have an effective substrate role for the sub-type of CYP 450 enzymes. The toxicity effect of carcinogenicity for SB35 and mutagenicity for metabolites are predicted while confirmed with some biological effects. However, reproductive disorders are pointed with SB35 by probability higher than 70%. Virtual screening methods are efficient tools for creating cost-effective predictions in the hazard's evaluation of SB35. However, a perspective view is suggested before decision-making for laboratory designing tests.

燃料染料在空气暴露情况下的生物活性评估和代谢途径的虚拟筛选研究。
合成染料的使用增加了人类健康的风险。尽管有关偶氮染料的信息取得了进展,但有关蒽醌染料毒性评估的报道却很少。溶剂蓝 35 (SB35) 是可能会遇到的蒽醌染料之一,因为它在各行各业的使用越来越多。由于实验室测试的设计成本非常高昂,因此采用了硅学筛选来预测 SB35 的代谢概况和毒性效应。MetaTox 软件用于预测第一阶段和第二阶段的两层代谢物。由于考虑了通过空气接触的情况,因此根据修改后的利宾斯基 5 规则,通过 SwissADME 模型研究了 SB35 的吸入和皮肤吸收途径。为了预测 SB35 和每种代谢物的生物效应和毒性,使用了 PASS 在线软件。化学活性是根据活化概率值(Pa)高于失活概率值(Pi)来考虑的。第一层预测了 SB35 的 N-脱烷基化反应,第二层从第一和第二阶段反应中获得了 7 种活性化合物。对 SB35 物理化学特性的研究证实,职业暴露情况下可通过吸入吸收。根据 RO5 规则,所有代谢物都会从肠道吸收。SB35 及其代谢物对 CYP 450 亚型酶具有有效的底物作用。预测了 SB35 的致癌性和代谢物的致突变性,并证实了一些生物效应。不过,SB35 会导致生殖障碍的概率高于 70%。虚拟筛选方法是在 SB35 危害评估中进行经济有效预测的有效工具。不过,在对实验室设计测试做出决策之前,建议从更广阔的视角进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
72
审稿时长
4 months
期刊介绍: Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信