Ellagitannin Component Punicalin Ameliorates Cognitive Dysfunction, Oxidative Stress, and Neuroinflammation via the Inhibition of cGAS-STING Signaling in the Brain of an Aging Mouse Model.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Peng Chen, Zhongyuan Zhang, Jiexin Lei, Jun Zhu, Gang Liu
{"title":"Ellagitannin Component Punicalin Ameliorates Cognitive Dysfunction, Oxidative Stress, and Neuroinflammation via the Inhibition of cGAS-STING Signaling in the Brain of an Aging Mouse Model.","authors":"Peng Chen, Zhongyuan Zhang, Jiexin Lei, Jun Zhu, Gang Liu","doi":"10.1002/ptr.8343","DOIUrl":null,"url":null,"abstract":"<p><p>Despite remarkable breakthroughs in pharmacotherapy, many potential therapies for aging remain unexplored. Punicalin (PUN), an ellagitannin component, exerts anti-inflammatory, antioxidant, and anti-apoptotic effects. This study investigated the beneficial effects of PUN against age-related brain damage in mice and explored the underlying mechanisms. We validated the protective effects of PUN against D-galactose (D-gal)-induced neuroinflammation and subsequent neuronal damage in BV2 microglia and N2a cells, respectively, in vitro. In vivo experiments were conducted on mice that were administered an 8-week regimen of intraperitoneal injections of D-gal at a dosage of 150 mg/kg/day, concurrently with oral gavage of PUN at the same dose. PUN inhibited the production of D-gal-induced inflammatory cytokines (iNOS, COX2, TNF-α, IL-6, IL-2, and IL-1β) in BV2 cells and conferred protection to N2a cells against synaptic damage mediated by BV2 microglia-induced neuroinflammation. The in vivo findings revealed that PUN considerably improved memory and learning deficits, reduced MDA levels, enhanced GSH-Px, CAT, and SOD activities, and modulated the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the secretion of SASP factors (ICAM-1, PAI-1, MMP-3, and MMP-9), decreased microglial activation, and reduced astrocytosis. Additionally, PUN suppressed the expression of cGAS, p-STING, p-TBK1, p-p65, and p-IRF3 in aging mouse brains and cultured BV2 microglia. In conclusion, PUN improved cognitive dysfunction in aging mice through antioxidant and anti-inflammatory mechanisms via inhibition of the cGAS-STING pathway, suggesting that it can be a promising therapeutic agent for brain aging and aging-related diseases.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8343","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite remarkable breakthroughs in pharmacotherapy, many potential therapies for aging remain unexplored. Punicalin (PUN), an ellagitannin component, exerts anti-inflammatory, antioxidant, and anti-apoptotic effects. This study investigated the beneficial effects of PUN against age-related brain damage in mice and explored the underlying mechanisms. We validated the protective effects of PUN against D-galactose (D-gal)-induced neuroinflammation and subsequent neuronal damage in BV2 microglia and N2a cells, respectively, in vitro. In vivo experiments were conducted on mice that were administered an 8-week regimen of intraperitoneal injections of D-gal at a dosage of 150 mg/kg/day, concurrently with oral gavage of PUN at the same dose. PUN inhibited the production of D-gal-induced inflammatory cytokines (iNOS, COX2, TNF-α, IL-6, IL-2, and IL-1β) in BV2 cells and conferred protection to N2a cells against synaptic damage mediated by BV2 microglia-induced neuroinflammation. The in vivo findings revealed that PUN considerably improved memory and learning deficits, reduced MDA levels, enhanced GSH-Px, CAT, and SOD activities, and modulated the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the secretion of SASP factors (ICAM-1, PAI-1, MMP-3, and MMP-9), decreased microglial activation, and reduced astrocytosis. Additionally, PUN suppressed the expression of cGAS, p-STING, p-TBK1, p-p65, and p-IRF3 in aging mouse brains and cultured BV2 microglia. In conclusion, PUN improved cognitive dysfunction in aging mice through antioxidant and anti-inflammatory mechanisms via inhibition of the cGAS-STING pathway, suggesting that it can be a promising therapeutic agent for brain aging and aging-related diseases.

鞣花丹宁成分普尼巴林通过抑制老化小鼠模型脑中的 cGAS-STING 信号转导改善认知功能障碍、氧化应激和神经炎症。
尽管药物疗法取得了重大突破,但许多治疗衰老的潜在疗法仍有待开发。鞣花丹宁(PUN)是一种鞣花丹宁成分,具有抗炎、抗氧化和抗细胞凋亡的作用。本研究调查了 PUN 对小鼠与年龄相关的脑损伤的有益作用,并探索了其潜在机制。我们分别在体外验证了 PUN 对 BV2 小胶质细胞和 N2a 细胞中 D-半乳糖(D-gal)诱导的神经炎症和随后的神经元损伤的保护作用。小鼠腹腔注射 150 毫克/千克/天剂量的 D-gal,同时口服相同剂量的 PUN,进行了为期 8 周的体内实验。PUN抑制了D-gal诱导的BV2细胞炎症细胞因子(iNOS、COX2、TNF-α、IL-6、IL-2和IL-1β)的产生,并保护N2a细胞免受BV2小胶质细胞诱导的神经炎症引起的突触损伤。体内研究结果表明,PUN 能显著改善记忆和学习障碍,降低 MDA 水平,提高 GSH-Px、CAT 和 SOD 活性,调节 iNOS、COX-2、IL-1β、IL-2、IL-6 和 TNF-α 等炎症蛋白的表达。此外,PUN 还能抑制 SASP 因子(ICAM-1、PAI-1、MMP-3 和 MMP-9)的分泌,降低小胶质细胞的活化,并减少星形胶质细胞的增生。此外,PUN 还能抑制老化小鼠大脑和培养的 BV2 小胶质细胞中 cGAS、p-STING、p-TBK1、p-p65 和 p-IRF3 的表达。总之,PUN 通过抑制 cGAS-STING 通路的抗氧化和抗炎机制改善了衰老小鼠的认知功能障碍,这表明它可以成为一种治疗脑衰老和衰老相关疾病的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信