{"title":"The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9.","authors":"Fang He, Meng-Xue Niu, Ting Wang, Jun-Lin Li, Yu-Jie Shi, Jiu-Jiu Zhao, Hao Li, Xiang Xiang, Peng Yang, Shu-Ying Wei, Tian-Tian Lin, Xiong Huang, Xinli Xia, Xue-Qin Wan","doi":"10.1093/plphys/kiae497","DOIUrl":null,"url":null,"abstract":"<p><p>Abscisic acid (ABA) signaling has been implicated in plant responses to water deficit-induced osmotic stress. However, the underlying molecular mechanism remains unelucidated. This study identified the RING-type E3 ubiquitin ligase RING ZINC FINGER PROTEIN1 (PtrRZFP1) in poplar (Populus trichocarpa), a woody model plant. PtrRZFP1 encodes an ubiquitin E3 ligase that participates in protein ubiquitination. PtrRZFP1 mainly functions in the nucleus and endoplasmic reticulum and is activated by drought and ABA. PtrRZFP1-overexpressing transgenic poplars (35S:PtrRZFP1) showed greater tolerance to drought, whereas PtrRZFP1-knockdown lines (KD-PtrRZFP1) showed greater sensitivity to drought. Under treatment with polyethylene glycol and ABA, PtrRZFP1 promoted the production of nitric oxide and hydrogen peroxide in stomatal guard cells, ultimately enhancing stomatal closure and improving drought tolerance. Additionally, PtrRZFP1 physically interacted with the clade A Protein Phosphatase 2C protein PtrPP2C-9, a core regulator of ABA signaling, and mediated its ubiquitination and eventual degradation through the ubiquitination-26S proteasome system, indicating that PtrRZFP1 positively regulates the ABA signaling pathway. Furthermore, the PtrPP2C-9-overexpression line was insensitive to ABA and more sensitive to drought than the wild-type plants, whereas the opposite phenotype was observed in 35S:PtrRZFP1 plants. In general, PtrRZFP1 negatively regulates the stability of PtrPP2C-9 to mediate poplar drought tolerance. The results of this study provide a theoretical framework for the targeted breeding of drought-tolerant traits in perennial woody plants.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":"2936-2955"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae497","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abscisic acid (ABA) signaling has been implicated in plant responses to water deficit-induced osmotic stress. However, the underlying molecular mechanism remains unelucidated. This study identified the RING-type E3 ubiquitin ligase RING ZINC FINGER PROTEIN1 (PtrRZFP1) in poplar (Populus trichocarpa), a woody model plant. PtrRZFP1 encodes an ubiquitin E3 ligase that participates in protein ubiquitination. PtrRZFP1 mainly functions in the nucleus and endoplasmic reticulum and is activated by drought and ABA. PtrRZFP1-overexpressing transgenic poplars (35S:PtrRZFP1) showed greater tolerance to drought, whereas PtrRZFP1-knockdown lines (KD-PtrRZFP1) showed greater sensitivity to drought. Under treatment with polyethylene glycol and ABA, PtrRZFP1 promoted the production of nitric oxide and hydrogen peroxide in stomatal guard cells, ultimately enhancing stomatal closure and improving drought tolerance. Additionally, PtrRZFP1 physically interacted with the clade A Protein Phosphatase 2C protein PtrPP2C-9, a core regulator of ABA signaling, and mediated its ubiquitination and eventual degradation through the ubiquitination-26S proteasome system, indicating that PtrRZFP1 positively regulates the ABA signaling pathway. Furthermore, the PtrPP2C-9-overexpression line was insensitive to ABA and more sensitive to drought than the wild-type plants, whereas the opposite phenotype was observed in 35S:PtrRZFP1 plants. In general, PtrRZFP1 negatively regulates the stability of PtrPP2C-9 to mediate poplar drought tolerance. The results of this study provide a theoretical framework for the targeted breeding of drought-tolerant traits in perennial woody plants.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.