Rawia M Khalil, Mohamed F Abdelhameed, Sally Abou Taleb, Mohamed A El-Saied, Eman Samy Shalaby
{"title":"Preparation and characterisation of esculetin-loaded nanostructured lipid carriers gels for topical treatment of UV-induced psoriasis.","authors":"Rawia M Khalil, Mohamed F Abdelhameed, Sally Abou Taleb, Mohamed A El-Saied, Eman Samy Shalaby","doi":"10.1080/10837450.2024.2407854","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis.</p><p><strong>Objective: </strong>The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption.</p><p><strong>Methods: </strong>The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by <i>in vitro</i> release and <i>in vivo</i> effectiveness on a rat model of UV-induced psoriasis.</p><p><strong>Results: </strong>Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis.</p><p><strong>Conclusion: </strong>As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"886-898"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2407854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis.
Objective: The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption.
Methods: The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by in vitro release and in vivo effectiveness on a rat model of UV-induced psoriasis.
Results: Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis.
Conclusion: As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.