{"title":"Upper thermal limits are ‘hard-wired’ across body mass but not populations of an estuarine fish","authors":"Daniel F. Gomez Isaza , Essie M. Rodgers","doi":"10.1016/j.jtherbio.2024.103970","DOIUrl":null,"url":null,"abstract":"<div><div>Climate warming is seeing temperatures breach exceptional thresholds as the frequency and intensity of heat waves increase. Efforts to forecast species vulnerability to climate warming often focus on upper thermal limits threatening survival, overlooking the role of intraspecific variation in determining vulnerability. Using an estuarine fish (black bream, <em>Acanthopagrus butcheri</em>) as a model, we explore how intraspecific variation in body mass and among populations affects upper thermal tolerance. Upper thermal limits were quantified using critical thermal maxima (CTmax) of wild fish. We used a ∼500 g (mean = 52.4 g, range = 0.57–541 g) mass range to test the relationship between body mass and thermal tolerance. Four distinct black bream populations were chosen along a 5° latitudinal cline to explore population differences in thermal limits. Contrary to expectations, there was no effect of body mass on upper thermal limits. However, significant population differences in thermal tolerance were observed that correlate with mean habitat temperatures. Specifically, the southern population had a significantly lower CTmax (35.57 ± 0.43 °C) compared to northern (36.32 ± 0.70 °C) and mid-latitude (36.36 ± 1.15 °C) populations. These data underscore the importance of observing intraspecific variation in thermal limits to reveal the capabilities of individuals within a species to cope with climate warming and improve the management of at-risk life stages and populations.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 103970"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001888/pdfft?md5=8b02bcb0d490a9fa0c4e78a14b5ef6f8&pid=1-s2.0-S0306456524001888-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate warming is seeing temperatures breach exceptional thresholds as the frequency and intensity of heat waves increase. Efforts to forecast species vulnerability to climate warming often focus on upper thermal limits threatening survival, overlooking the role of intraspecific variation in determining vulnerability. Using an estuarine fish (black bream, Acanthopagrus butcheri) as a model, we explore how intraspecific variation in body mass and among populations affects upper thermal tolerance. Upper thermal limits were quantified using critical thermal maxima (CTmax) of wild fish. We used a ∼500 g (mean = 52.4 g, range = 0.57–541 g) mass range to test the relationship between body mass and thermal tolerance. Four distinct black bream populations were chosen along a 5° latitudinal cline to explore population differences in thermal limits. Contrary to expectations, there was no effect of body mass on upper thermal limits. However, significant population differences in thermal tolerance were observed that correlate with mean habitat temperatures. Specifically, the southern population had a significantly lower CTmax (35.57 ± 0.43 °C) compared to northern (36.32 ± 0.70 °C) and mid-latitude (36.36 ± 1.15 °C) populations. These data underscore the importance of observing intraspecific variation in thermal limits to reveal the capabilities of individuals within a species to cope with climate warming and improve the management of at-risk life stages and populations.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles