Carol A. Barnes, Michele R. Permenter, Julie A. Vogt, Kewei Chen, Thomas G. Beach
{"title":"Human Alzheimer's Disease ATN/ABC Staging Applied to Aging Rhesus Macaque Brains: Association With Cognition and MRI-Based Regional Gray Matter Volume","authors":"Carol A. Barnes, Michele R. Permenter, Julie A. Vogt, Kewei Chen, Thomas G. Beach","doi":"10.1002/cne.25670","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The brain changes of Alzheimer's disease (AD) include Abeta (Aβ) amyloid plaques (“A”), abnormally phosphorylated tau tangles (“T”), and neurodegeneration (“N”). These have been used to construct in vivo and postmortem diagnostic and staging classifications for evaluating the spectrum of AD in the “ATN” and “ABC” (“B” for Braak tau stage, “C” for Consortium to Establish a Registry for Alzheimer's Disease [CERAD] neuritic plaque density) systems. Another common AD feature involves cerebral amyloid angiopathy (CAA). We report the first experiment to examine relationships among cognition, brain distribution of amyloid plaques, CAA, tau/tangles, and magnetic resonance imaging (MRI)-determined volume changes (as a measure of “N”) in the same group of behaviorally characterized nonhuman primates. Both ATN and ABC systems were applied to a group of 32 rhesus macaques aged between 7 and 33 years. When an immunohistochemical method for “T” and “B” was used, some monkeys were “triple positive” on ATN, with a maximum ABC status of A1B2C3. With silver or thioflavin S methods, however, all monkeys were classified as T-negative and B0, indicating the absence of mature neurofibrillary tangles (NFTs) and hence neuropathologically defined AD. Although monkeys at extremes of the ATN and ABC classifications, or with frequent CAA, had significantly lower scores on some cognitive tests, the lack of fully mature NFTs or dementia-consistent cognitive impairment indicates that fully developed AD may not occur in rhesus macaques. There were sex differences noted in the types of histopathology present, and only CAA was significantly related to gray matter volume.</p>\n </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.25670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The brain changes of Alzheimer's disease (AD) include Abeta (Aβ) amyloid plaques (“A”), abnormally phosphorylated tau tangles (“T”), and neurodegeneration (“N”). These have been used to construct in vivo and postmortem diagnostic and staging classifications for evaluating the spectrum of AD in the “ATN” and “ABC” (“B” for Braak tau stage, “C” for Consortium to Establish a Registry for Alzheimer's Disease [CERAD] neuritic plaque density) systems. Another common AD feature involves cerebral amyloid angiopathy (CAA). We report the first experiment to examine relationships among cognition, brain distribution of amyloid plaques, CAA, tau/tangles, and magnetic resonance imaging (MRI)-determined volume changes (as a measure of “N”) in the same group of behaviorally characterized nonhuman primates. Both ATN and ABC systems were applied to a group of 32 rhesus macaques aged between 7 and 33 years. When an immunohistochemical method for “T” and “B” was used, some monkeys were “triple positive” on ATN, with a maximum ABC status of A1B2C3. With silver or thioflavin S methods, however, all monkeys were classified as T-negative and B0, indicating the absence of mature neurofibrillary tangles (NFTs) and hence neuropathologically defined AD. Although monkeys at extremes of the ATN and ABC classifications, or with frequent CAA, had significantly lower scores on some cognitive tests, the lack of fully mature NFTs or dementia-consistent cognitive impairment indicates that fully developed AD may not occur in rhesus macaques. There were sex differences noted in the types of histopathology present, and only CAA was significantly related to gray matter volume.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.