Trevor R Baybutt, Ariana A Entezari, Adi Caspi, Ross E Staudt, Robert D Carlson, Scott A Waldman, Adam E Snook
{"title":"CD8α Structural Domains Enhance GUCY2C CAR-T Cell Efficacy.","authors":"Trevor R Baybutt, Ariana A Entezari, Adi Caspi, Ross E Staudt, Robert D Carlson, Scott A Waldman, Adam E Snook","doi":"10.1080/15384047.2024.2398801","DOIUrl":null,"url":null,"abstract":"<p><p>Despite success in treating some hematological malignancies, CAR-T cells have not yet produced similar outcomes in solid tumors due, in part, to the tumor microenvironment, poor persistence, and a paucity of suitable target antigens. Importantly, the impact of the CAR components on these challenges remains focused on the intracellular signaling and antigen-binding domains. In contrast, the flexible hinge and transmembrane domains have been commoditized and are the least studied components of the CAR. Here, we compared the hinge and transmembrane domains derived from either the CD8ɑ or CD28 molecule in identical GUCY2C-targeted third-generation designs for colorectal cancer. While these structural domains do not contribute to differences in antigen-independent contexts, such as CAR expression and differentiation and exhaustion phenotypes, the CD8ɑ structural domain CAR has a greater affinity for GUCY2C. This results in increased production of inflammatory cytokines and granzyme B, improved cytolytic effector function with low antigen-expressing tumor cells, and robust anti-tumor efficacy <i>in vivo</i> compared with the CD28 structural domain CAR. This suggests that CD8α structural domains should be considered in the design of all CARs for the generation of high-affinity CARs and optimally effective CAR-T cells in solid tumor immunotherapy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2398801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite success in treating some hematological malignancies, CAR-T cells have not yet produced similar outcomes in solid tumors due, in part, to the tumor microenvironment, poor persistence, and a paucity of suitable target antigens. Importantly, the impact of the CAR components on these challenges remains focused on the intracellular signaling and antigen-binding domains. In contrast, the flexible hinge and transmembrane domains have been commoditized and are the least studied components of the CAR. Here, we compared the hinge and transmembrane domains derived from either the CD8ɑ or CD28 molecule in identical GUCY2C-targeted third-generation designs for colorectal cancer. While these structural domains do not contribute to differences in antigen-independent contexts, such as CAR expression and differentiation and exhaustion phenotypes, the CD8ɑ structural domain CAR has a greater affinity for GUCY2C. This results in increased production of inflammatory cytokines and granzyme B, improved cytolytic effector function with low antigen-expressing tumor cells, and robust anti-tumor efficacy in vivo compared with the CD28 structural domain CAR. This suggests that CD8α structural domains should be considered in the design of all CARs for the generation of high-affinity CARs and optimally effective CAR-T cells in solid tumor immunotherapy.
尽管 CAR-T 细胞在治疗某些血液恶性肿瘤方面取得了成功,但在实体瘤方面尚未取得类似的疗效,部分原因在于肿瘤微环境、持久性差以及合适的靶抗原匮乏。重要的是,CAR 成分对这些挑战的影响仍然集中在细胞内信号传导和抗原结合域。相比之下,灵活的铰链和跨膜结构域已经商品化,是研究最少的 CAR 成分。在这里,我们比较了相同的 GUCY2C 靶向结直肠癌的第三代设计中源自 CD8ɑ 或 CD28 分子的铰链和跨膜结构域。虽然这些结构域不会导致抗原无关情况下的差异,如 CAR 表达、分化和衰竭表型,但 CD8ɑ 结构域 CAR 与 GUCY2C 的亲和力更大。与 CD28 结构域 CAR 相比,CD8ɑ 结构域 CAR 与 GUCY2C 的亲和力更强,从而增加了炎性细胞因子和颗粒酶 B 的产生,提高了对低抗原表达肿瘤细胞的细胞溶解效应功能,并在体内具有强大的抗肿瘤功效。这表明,在设计所有 CAR 时都应考虑到 CD8α 结构域,以便在实体瘤免疫疗法中生成高亲和力 CAR 和最有效的 CAR-T 细胞。
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.