{"title":"High-performance liquid chromatography-tandem mass spectrometry was used to measure 20 antidepressants in human serum.","authors":"Huanchang Luo, Jianwei Zhou, Guanfeng Lin, Xiaojing Huang, Yuhang Yang, Yingsong Wu","doi":"10.1080/17576180.2024.2401283","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> This study used high performance liquid chromatography-tandem mass spectrometry to quantify the blood concentrations of 20 antidepressants, such as bupropion and fluoxetine, in human serum samples.<b>Methods:</b> After direct precipitation with a 1:9 protein precipitant of methanol and acetonitrile, serum samples were examined using high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The material was separated using a Poroshell 120 EC-C18 column (3.0 mm × 50 mm, 2.7 μm) and gradient elution. The mobile phases were phase A 0.01% formic acid aqueous solution (containing 2 mmol/ml ammonium acetate) and phase B methanol solution. A 0.45 ml/min flow rate was used to divide the sample and inject 5 μl. Electrospray ionization source positive ion mode and multiple reaction monitoring modes were used for analysis. Measurement was quantified using an internal standard technique.<b>Results:</b> Accuracy ranged from 90.3 to 114.3%, intra-day precision from 100.1 to 112.3%, inter-day precision from 100.4 to 112.6%, extraction recoveries from 85.5 to 114.5% and matrix effect from 85.6 to 98.7%.<b>Conclusion:</b> This approach is fast, accurate, sensitive and repeatable. It can identify 20 antidepressants in blood simultaneously. This can be used to monitor blood drug levels and medication metabolism.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1033-1044"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2024.2401283","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study used high performance liquid chromatography-tandem mass spectrometry to quantify the blood concentrations of 20 antidepressants, such as bupropion and fluoxetine, in human serum samples.Methods: After direct precipitation with a 1:9 protein precipitant of methanol and acetonitrile, serum samples were examined using high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The material was separated using a Poroshell 120 EC-C18 column (3.0 mm × 50 mm, 2.7 μm) and gradient elution. The mobile phases were phase A 0.01% formic acid aqueous solution (containing 2 mmol/ml ammonium acetate) and phase B methanol solution. A 0.45 ml/min flow rate was used to divide the sample and inject 5 μl. Electrospray ionization source positive ion mode and multiple reaction monitoring modes were used for analysis. Measurement was quantified using an internal standard technique.Results: Accuracy ranged from 90.3 to 114.3%, intra-day precision from 100.1 to 112.3%, inter-day precision from 100.4 to 112.6%, extraction recoveries from 85.5 to 114.5% and matrix effect from 85.6 to 98.7%.Conclusion: This approach is fast, accurate, sensitive and repeatable. It can identify 20 antidepressants in blood simultaneously. This can be used to monitor blood drug levels and medication metabolism.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.