{"title":"Catalytic Edges in One-Dimensional Covalent Organic Frameworks for the Oxygen Reduction Reaction.","authors":"Yumeng Chang, Chao Lin, Haifeng Wang, Xiaotong Wu, Luyao Zou, Jixin Shi, Qi Xiao, Qing Xu, Xiaopeng Li, Wei Luo","doi":"10.1002/anie.202414075","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-free covalent organic frameworks (COFs) are employed in oxygen reduction reactions (ORR) because of their diverse structural units and controllable catalytic sites, and the edge sites have high catalytic activity than the basal sites. However, it is still challenge to modulate the edge sites in COFs, because the extended frameworks in two- or three-dimensional topologies resulted in limited edge parts. In this study, we have demonstrated the edge site modulation engineering based on one dimensional (1D) COFs to catalyze the ORR, which featured distinct edge groups-carbonyl, diaminopyrazine, phenylimidazole, and benzaldehyde imidazole units. The synthesized COFs have same ordered frameworks, similar pore structure, but had different electronic states of the carbons along the edge sites, which results in tailored catalytic properties. Notably, the COF functionalized with a phenylimidazole edge group exhibited superior catalytic performance compared to the other synthesized COFs. And the theoretical calculation further revealed the different edge sites had tunable binding ability of the intermediates OOH*, which contributed modulated activity. Our findings introduce a novel way for designing COFs optimized for ORR applications through molecular level control of edge sites.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414075"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-free covalent organic frameworks (COFs) are employed in oxygen reduction reactions (ORR) because of their diverse structural units and controllable catalytic sites, and the edge sites have high catalytic activity than the basal sites. However, it is still challenge to modulate the edge sites in COFs, because the extended frameworks in two- or three-dimensional topologies resulted in limited edge parts. In this study, we have demonstrated the edge site modulation engineering based on one dimensional (1D) COFs to catalyze the ORR, which featured distinct edge groups-carbonyl, diaminopyrazine, phenylimidazole, and benzaldehyde imidazole units. The synthesized COFs have same ordered frameworks, similar pore structure, but had different electronic states of the carbons along the edge sites, which results in tailored catalytic properties. Notably, the COF functionalized with a phenylimidazole edge group exhibited superior catalytic performance compared to the other synthesized COFs. And the theoretical calculation further revealed the different edge sites had tunable binding ability of the intermediates OOH*, which contributed modulated activity. Our findings introduce a novel way for designing COFs optimized for ORR applications through molecular level control of edge sites.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.