{"title":"Cell Type-Specific Modulation of Acute Itch Processing in the Anterior Cingulate Cortex","authors":"Jiaqi Li, Yang Bai, Junye Ge, Yiwen Zhang, Qiuying Zhao, Dangchao Li, Baolin Guo, Shasha Gao, Yuanyuan Zhu, Guohong Cai, Xiangdong Wan, Jing Huang, Shengxi Wu","doi":"10.1002/advs.202403445","DOIUrl":null,"url":null,"abstract":"<p>Despite remarkable progress in understanding the fundamental bases of itching, its cortical mechanisms remain poorly understood. Herein, the causal contributions of defined anterior cingulate cortex (ACC) neuronal populations to acute itch modulation in mice are established. Using cell type-specific manipulations, the opposing functions of ACC glutamatergic and GABAergic neurons in regulating acute itching are demonstrated. Photometry studies indicated that ACC glutamatergic neurons are activated during scratching induced by both histamine and chloroquine, whereas the activation pattern of GABAergic neurons is complicated by GABAergic subpopulations and acute itch modalities. By combining cell type- and projection-specific techniques, a thalamocortical circuit is further identified from the mediodorsal thalamus driving the itch-scratching cycle related to histaminergic and non-histaminergic itching, which is contingent on the activation of postsynaptic parvalbumin-expressing neurons in the ACC. These findings reveal a cellular and circuit signature of ACC neurons orchestrating behavioral responses to itching and may provide insights into therapies for itch-related diseases.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 43","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202403445","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite remarkable progress in understanding the fundamental bases of itching, its cortical mechanisms remain poorly understood. Herein, the causal contributions of defined anterior cingulate cortex (ACC) neuronal populations to acute itch modulation in mice are established. Using cell type-specific manipulations, the opposing functions of ACC glutamatergic and GABAergic neurons in regulating acute itching are demonstrated. Photometry studies indicated that ACC glutamatergic neurons are activated during scratching induced by both histamine and chloroquine, whereas the activation pattern of GABAergic neurons is complicated by GABAergic subpopulations and acute itch modalities. By combining cell type- and projection-specific techniques, a thalamocortical circuit is further identified from the mediodorsal thalamus driving the itch-scratching cycle related to histaminergic and non-histaminergic itching, which is contingent on the activation of postsynaptic parvalbumin-expressing neurons in the ACC. These findings reveal a cellular and circuit signature of ACC neurons orchestrating behavioral responses to itching and may provide insights into therapies for itch-related diseases.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.