Enzyme Tunnel Dynamics and Catalytic Mechanism of Norcoclaurine Synthase: Insights from a Combined LiGaMD and DFT Study.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-03 Epub Date: 2024-09-24 DOI:10.1021/acs.jpcb.4c04243
Xujian Wang, Haodong Liu, Jingyao Wang, Le Chang, Jiayang Cai, Zexuan Wei, Jiayu Pan, Xiaohui Gu, Wan-Lu Li, Jiahuang Li
{"title":"Enzyme Tunnel Dynamics and Catalytic Mechanism of Norcoclaurine Synthase: Insights from a Combined LiGaMD and DFT Study.","authors":"Xujian Wang, Haodong Liu, Jingyao Wang, Le Chang, Jiayang Cai, Zexuan Wei, Jiayu Pan, Xiaohui Gu, Wan-Lu Li, Jiahuang Li","doi":"10.1021/acs.jpcb.4c04243","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducts a systematic investigation into the catalytic mechanism of norcoclaurine synthase (NCS), a key enzyme in the biosynthesis of tetrahydroisoquinolines (THIQs) with therapeutic applications. By integration of LiGaMD and DFT calculations, the reaction pathway of NCS is mapped, providing detailed insights into its catalytic activity and selectivity. Our findings underscore the critical role of E103 in substrate capture and reveal the hitherto unappreciated influence of nonpolar residues M183 and L76 on tunnel dynamics. A prominent discovery is the identification of a high-energy barrier (44.2 kcal/mol) associated with the aromatic electrophilic attack, which pinpoints the rate-limiting step. Moreover, we disclose the existence of dual transition states leading to different products with the energetically favored six-membered ring formation consistent with experimental evidence. These mechanistic revelations not only refine our understanding of NCS but also advocate for a renewed emphasis on enzyme tunnel engineering for optimizing THIQs biosynthesis. The research sets the stage for translating these findings into practical enzyme modifications. Our results highlight the potential of NCS as a biocatalyst to overcome the limitations of current synthetic methodologies, such as low yields and environmental impacts, and provide a theoretical contribution to the efficient, eco-friendly production of THIQs-based pharmaceuticals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducts a systematic investigation into the catalytic mechanism of norcoclaurine synthase (NCS), a key enzyme in the biosynthesis of tetrahydroisoquinolines (THIQs) with therapeutic applications. By integration of LiGaMD and DFT calculations, the reaction pathway of NCS is mapped, providing detailed insights into its catalytic activity and selectivity. Our findings underscore the critical role of E103 in substrate capture and reveal the hitherto unappreciated influence of nonpolar residues M183 and L76 on tunnel dynamics. A prominent discovery is the identification of a high-energy barrier (44.2 kcal/mol) associated with the aromatic electrophilic attack, which pinpoints the rate-limiting step. Moreover, we disclose the existence of dual transition states leading to different products with the energetically favored six-membered ring formation consistent with experimental evidence. These mechanistic revelations not only refine our understanding of NCS but also advocate for a renewed emphasis on enzyme tunnel engineering for optimizing THIQs biosynthesis. The research sets the stage for translating these findings into practical enzyme modifications. Our results highlight the potential of NCS as a biocatalyst to overcome the limitations of current synthetic methodologies, such as low yields and environmental impacts, and provide a theoretical contribution to the efficient, eco-friendly production of THIQs-based pharmaceuticals.

去甲古柯碱合成酶的酶隧道动力学和催化机理:LiGaMD 和 DFT 联合研究的启示。
本研究对具有治疗用途的四氢异喹啉类化合物(THIQs)生物合成过程中的关键酶--去甲古柯碱合成酶(NCS)的催化机理进行了系统研究。通过整合 LiGaMD 和 DFT 计算,我们绘制了 NCS 的反应路径图,为了解其催化活性和选择性提供了详细的信息。我们的研究结果强调了 E103 在底物捕获中的关键作用,并揭示了非极性残基 M183 和 L76 对隧道动力学的影响,这种影响迄今为止尚未得到重视。一个突出的发现是确定了与芳香亲电攻击相关的高能量势垒(44.2 kcal/mol),从而确定了限速步骤。此外,我们还揭示了导致不同产物的双重过渡状态的存在,其中能量偏好的六元环形成与实验证据一致。这些机理的揭示不仅完善了我们对 NCS 的理解,而且倡导重新重视酶隧道工程,以优化 THIQs 的生物合成。这项研究为将这些发现转化为实际的酶修饰奠定了基础。我们的研究结果凸显了 NCS 作为生物催化剂的潜力,它可以克服当前合成方法的局限性,如产量低和对环境的影响,并为高效、生态友好型 THIQs 类药物的生产提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信