Quantum Information Driven Ansatz (QIDA): Shallow-Depth Empirical Quantum Circuits from Quantum Chemistry.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Davide Materia, Leonardo Ratini, Celestino Angeli, Leonardo Guidoni
{"title":"Quantum Information Driven Ansatz (QIDA): Shallow-Depth Empirical Quantum Circuits from Quantum Chemistry.","authors":"Davide Materia, Leonardo Ratini, Celestino Angeli, Leonardo Guidoni","doi":"10.1021/acs.jpca.4c03756","DOIUrl":null,"url":null,"abstract":"<p><p>Hardware-efficient empirical variational ansätze for Variational Quantum Eigensolver (VQE) simulations of quantum chemistry often lack a direct connection to classical quantum chemistry methods. In this work, we propose a method to bridge this gap by introducing a novel approach to constructing a starting point for variational quantum circuits, leveraging quantum mutual information from classical quantum chemistry states to design simple yet effective heuristic ansätze with a topology reflecting the molecular system's correlations. As a first step, we make use of quantum chemistry calculations, such as Mo̷ller-Plesset (MP2) perturbation theory, to initially provide approximate Natural Orbitals, which have been shown to be the best candidate one-electron basis for developing compact empirical wave functions.<sup>1</sup> Second, we evaluate the quantum mutual information matrix, which provides insights about the main correlations between qubits of the quantum circuit, and enables a direct design of entangling blocks for the circuit. The resulting ansatz is then used with a VQE to obtain a short-depth variational ground state of the electronic Hamiltonian. To validate our approach, we perform a comprehensive statistical analysis through simulations of various molecular systems (<i>H</i><sub>2</sub>, <i>LiH</i>, <i>H</i><sub>2</sub><i>O</i>) and apply it to the more complex <i>NH</i><sub>3</sub> molecule. The reported results demonstrate that the proposed methodology gives rise to highly effective ansätze, outperforming the standard empirical ladder-entangler ansatz. Overall, our approach can be used as an effective state preparation, providing a promising route for designing efficient variational quantum circuits for large molecular systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c03756","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hardware-efficient empirical variational ansätze for Variational Quantum Eigensolver (VQE) simulations of quantum chemistry often lack a direct connection to classical quantum chemistry methods. In this work, we propose a method to bridge this gap by introducing a novel approach to constructing a starting point for variational quantum circuits, leveraging quantum mutual information from classical quantum chemistry states to design simple yet effective heuristic ansätze with a topology reflecting the molecular system's correlations. As a first step, we make use of quantum chemistry calculations, such as Mo̷ller-Plesset (MP2) perturbation theory, to initially provide approximate Natural Orbitals, which have been shown to be the best candidate one-electron basis for developing compact empirical wave functions.1 Second, we evaluate the quantum mutual information matrix, which provides insights about the main correlations between qubits of the quantum circuit, and enables a direct design of entangling blocks for the circuit. The resulting ansatz is then used with a VQE to obtain a short-depth variational ground state of the electronic Hamiltonian. To validate our approach, we perform a comprehensive statistical analysis through simulations of various molecular systems (H2, LiH, H2O) and apply it to the more complex NH3 molecule. The reported results demonstrate that the proposed methodology gives rise to highly effective ansätze, outperforming the standard empirical ladder-entangler ansatz. Overall, our approach can be used as an effective state preparation, providing a promising route for designing efficient variational quantum circuits for large molecular systems.

量子信息驱动解析(QIDA):来自量子化学的浅层经验量子电路。
用于量子化学变分量子方程(VQE)模拟的硬件高效经验变分方程往往与经典量子化学方法缺乏直接联系。在这项工作中,我们提出了一种弥合这一差距的方法,即引入一种新方法来构建变分量子电路的起点,利用经典量子化学态的量子互信息来设计简单而有效的启发式答案,其拓扑结构反映了分子系统的相关性。第一步,我们利用量子化学计算,例如摩尔-普莱塞特(MP2)扰动理论,首先提供近似的自然轨道(Natural Orbitals),这已被证明是开发紧凑型经验波函数的最佳单电子基础。然后,将得到的反演与 VQE 结合使用,就能得到电子哈密顿的短深度变异基态。为了验证我们的方法,我们通过模拟各种分子系统(H2、LiH、H2O)进行了全面的统计分析,并将其应用于更复杂的 NH3 分子。报告结果表明,所提出的方法产生了非常有效的解析,优于标准的经验梯形-正交解析。总之,我们的方法可以用作有效的状态准备,为设计大型分子系统的高效变分量子电路提供了一条很有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信