Mechanistic Exploration of Determinants for the Fullerene@FASnI3 Interface Stability: Surface Termination and Monovalent Cation Rotation.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-03 Epub Date: 2024-09-24 DOI:10.1021/acs.jpca.4c04473
Mengmeng Yang, Jing-Yi Qiao, Yan Zheng, Laicai Li, Jia-Jia Yang
{"title":"Mechanistic Exploration of Determinants for the Fullerene@FASnI<sub>3</sub> Interface Stability: Surface Termination and Monovalent Cation Rotation.","authors":"Mengmeng Yang, Jing-Yi Qiao, Yan Zheng, Laicai Li, Jia-Jia Yang","doi":"10.1021/acs.jpca.4c04473","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation into the interfacial properties between fullerene compounds and Sn-based perovskites (Sn-PVSK) holds extraordinary significance for advancing efficient and stable Pb-free perovskite solar cells. This study is the first theoretical exploration to examine their interfacial properties using Ab initio molecular dynamics (AIMD) simulations and trajectory analysis methods with C60@FASnI<sub>3</sub> as a representative system. The impact of surface termination and FA<sup>+</sup> rotation on interface stability has been assessed. Within the 10 ps AIMD simulations, the C60@FAI interface demonstrates greater stability compared to the C60@SnI interface due to the robustness of the single-bonded I on the FAI termination and weaker C60-FAI interactions. The C60@SnI interface has poor stability, but it can be enhanced by controlling the FA<sup>+</sup> rotation, achieving optimal stability at a 45° rotation along the C-H bond axis. This is attributed to minimal hydrogen bond interactions and a reduced steric hindrance. This work not only substantiates the pivotal role of surface termination in maintaining interface stability but, most importantly, also reveals how FA<sup>+</sup> rotational dynamics regulate the C60@SnI interface stability, providing valuable insights for further improving the efficiency of Sn-PVSK solar cells.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation into the interfacial properties between fullerene compounds and Sn-based perovskites (Sn-PVSK) holds extraordinary significance for advancing efficient and stable Pb-free perovskite solar cells. This study is the first theoretical exploration to examine their interfacial properties using Ab initio molecular dynamics (AIMD) simulations and trajectory analysis methods with C60@FASnI3 as a representative system. The impact of surface termination and FA+ rotation on interface stability has been assessed. Within the 10 ps AIMD simulations, the C60@FAI interface demonstrates greater stability compared to the C60@SnI interface due to the robustness of the single-bonded I on the FAI termination and weaker C60-FAI interactions. The C60@SnI interface has poor stability, but it can be enhanced by controlling the FA+ rotation, achieving optimal stability at a 45° rotation along the C-H bond axis. This is attributed to minimal hydrogen bond interactions and a reduced steric hindrance. This work not only substantiates the pivotal role of surface termination in maintaining interface stability but, most importantly, also reveals how FA+ rotational dynamics regulate the C60@SnI interface stability, providing valuable insights for further improving the efficiency of Sn-PVSK solar cells.

富勒烯@FASnI3界面稳定性决定因素的机理探索:表面终止和单价阳离子旋转。
研究富勒烯化合物与锡基包晶石(Sn-PVSK)之间的界面特性对于推动高效、稳定的无铅包晶石太阳能电池的发展具有非凡的意义。本研究以 C60@FASnI3 为代表系统,首次采用 Ab initio 分子动力学(AIMD)模拟和轨迹分析方法对它们的界面特性进行了理论探索。我们评估了表面终止和 FA+ 旋转对界面稳定性的影响。在 10 ps 的 AIMD 模拟中,C60@FAI 界面比 C60@SnI 界面表现出更高的稳定性,这是由于 FAI 终止时单键 I 的稳健性和较弱的 C60-FAI 相互作用。C60@SnI 界面的稳定性较差,但可以通过控制 FA+ 的旋转来增强其稳定性,在沿 C-H 键轴旋转 45° 时达到最佳稳定性。这归因于氢键相互作用的最小化和立体阻碍的减少。这项工作不仅证实了表面终止在维持界面稳定性方面的关键作用,更重要的是,它还揭示了 FA+ 旋转动力学如何调节 C60@SnI 界面的稳定性,为进一步提高锡-PVSK 太阳能电池的效率提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信