High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method†
Ali Sharafatdoust Asl, Mohammad Zabetian Targhi, Soroush Zeaei, Iman Halvaei and Reza Nosrati
{"title":"High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method†","authors":"Ali Sharafatdoust Asl, Mohammad Zabetian Targhi, Soroush Zeaei, Iman Halvaei and Reza Nosrati","doi":"10.1039/D4LC00506F","DOIUrl":null,"url":null,"abstract":"<p >Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 20","pages":" 4907-4917"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00506f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.