Nico Grasse, Riccardo Massei, Bettina Seiwert, Stefan Scholz, Beate I Escher, Thorsten Reemtsma, Qiuguo Fu
{"title":"Impact of Biotransformation on Internal Concentrations and Specificity Classification of Organic Chemicals in the Zebrafish Embryo (<i>Danio rerio</i>).","authors":"Nico Grasse, Riccardo Massei, Bettina Seiwert, Stefan Scholz, Beate I Escher, Thorsten Reemtsma, Qiuguo Fu","doi":"10.1021/acs.est.4c04156","DOIUrl":null,"url":null,"abstract":"<p><p>Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment. To evaluate the prediction of a mass balance model (MBM) and the impact of biotransformation on ICs, experimental ICs of 63 chemicals in zebrafish embryos were compared to predictions with physicochemical properties as input parameters. Experimental ICs of 79% (50 of 63) of the chemicals deviated less than 10-fold from predictions, and the remaining 13 deviated up to a factor of 90. Using experimental ICs changed the classification for 19 chemicals, with ICs 5 to 90 times lower than predicted, showing the bias of specificity classification. Uptake kinetics of pirinixic acid, genistein, dexamethasone, ethoprophos, atorvastatin, and niflumic acid were studied over a 96 h exposure period, and transformation products (TPs) were elucidated using suspect- and nontarget screening with UPLC-HRMS. 35 TPs (5 to 8 TPs per compound) were tentatively identified and semiquantified based on peak areas, suggesting that biotransformation may partly account for the overpredictions of ICs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04156","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment. To evaluate the prediction of a mass balance model (MBM) and the impact of biotransformation on ICs, experimental ICs of 63 chemicals in zebrafish embryos were compared to predictions with physicochemical properties as input parameters. Experimental ICs of 79% (50 of 63) of the chemicals deviated less than 10-fold from predictions, and the remaining 13 deviated up to a factor of 90. Using experimental ICs changed the classification for 19 chemicals, with ICs 5 to 90 times lower than predicted, showing the bias of specificity classification. Uptake kinetics of pirinixic acid, genistein, dexamethasone, ethoprophos, atorvastatin, and niflumic acid were studied over a 96 h exposure period, and transformation products (TPs) were elucidated using suspect- and nontarget screening with UPLC-HRMS. 35 TPs (5 to 8 TPs per compound) were tentatively identified and semiquantified based on peak areas, suggesting that biotransformation may partly account for the overpredictions of ICs.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.