Yuhan Zhao, Zeyu Hou, Bingxin Yan, Xueting Cao, Bo Su, Mi Lv, Hailin Cui, Cunlin Zhang
{"title":"Research on Drug Efficacy using a Terahertz Metasurface Microfluidic Biosensor Based on Fano Resonance Effect.","authors":"Yuhan Zhao, Zeyu Hou, Bingxin Yan, Xueting Cao, Bo Su, Mi Lv, Hailin Cui, Cunlin Zhang","doi":"10.1021/acsami.4c12247","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced biosensors must exhibit high sensitivity, reliability, and convenience, making them suitable for detecting trace samples in biological or medical applications. Currently, biometric identification is the predominant method in clinical practice, but it is complex and time-consuming. In this study, we propose an optical metasurface utilizing the Fano resonance effect, which exhibits a sharp resonance with a transmittance of 32% at 0.65 THz. The resonance dip has a narrow bandwidth of 0.07 THz and a high <i>Q</i>-factor of 42. This resonance arises from the coupling of bright and dark modes, underpinned by the electromagnetic mechanism of Fano resonance. We integrated the metasurface into a microfluidic platform and fabricated low-temperature gallium arsenide photoconductive antennas (LT-GaAs-PCAs) on both sides of the microfluidics to efficiently generate and detect THz waves, significantly reducing the system's volume. The biosensor's detection limits for <i>Escherichia coli</i> (<i>E. coli</i>) and cefamandole nafate are 5 × 10<sup>3</sup> cells/mL and 5 μg/mL, respectively. Experimentally, when <i>E. coli</i> and cefamandole nafate solutions were sequentially injected into the microfluidic chip, a blue shift in the spectrum was observed. The sensor measured a 95.2% killing rate of <i>E. coli</i> by 40 μg/mL cefamandole nafate solution, with only a 3% deviation from biological experiments. Additionally, a timed killing experiment using 40 μg/mL cefamandole nafate on <i>E. coli</i> revealed a 93.7% killing rate within 3 min. This research presents a THz microfluidic biosensor with rapid detection, high sensitivity, and enhanced portability and integration, offering a promising approach for biomedical research, including antibiotic efficacy assessment and bacterial concentration monitoring.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12247","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced biosensors must exhibit high sensitivity, reliability, and convenience, making them suitable for detecting trace samples in biological or medical applications. Currently, biometric identification is the predominant method in clinical practice, but it is complex and time-consuming. In this study, we propose an optical metasurface utilizing the Fano resonance effect, which exhibits a sharp resonance with a transmittance of 32% at 0.65 THz. The resonance dip has a narrow bandwidth of 0.07 THz and a high Q-factor of 42. This resonance arises from the coupling of bright and dark modes, underpinned by the electromagnetic mechanism of Fano resonance. We integrated the metasurface into a microfluidic platform and fabricated low-temperature gallium arsenide photoconductive antennas (LT-GaAs-PCAs) on both sides of the microfluidics to efficiently generate and detect THz waves, significantly reducing the system's volume. The biosensor's detection limits for Escherichia coli (E. coli) and cefamandole nafate are 5 × 103 cells/mL and 5 μg/mL, respectively. Experimentally, when E. coli and cefamandole nafate solutions were sequentially injected into the microfluidic chip, a blue shift in the spectrum was observed. The sensor measured a 95.2% killing rate of E. coli by 40 μg/mL cefamandole nafate solution, with only a 3% deviation from biological experiments. Additionally, a timed killing experiment using 40 μg/mL cefamandole nafate on E. coli revealed a 93.7% killing rate within 3 min. This research presents a THz microfluidic biosensor with rapid detection, high sensitivity, and enhanced portability and integration, offering a promising approach for biomedical research, including antibiotic efficacy assessment and bacterial concentration monitoring.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture