{"title":"An Ultrasensitive Bi<sub>2</sub>O<sub>2</sub>Se/In<sub>2</sub>S<sub>3</sub> Photodetector with Low Detection Limit and Fast Response toward High-Precision Unmanned Driving.","authors":"Meifei Chen, Xiqiang Chen, Ziqiao Wu, Zihao Huang, Wei Gao, Mengmeng Yang, Ye Xiao, Yu Zhao, Zhaoqiang Zheng, Jiandong Yao, Jingbo Li","doi":"10.1021/acsnano.4c08636","DOIUrl":null,"url":null,"abstract":"<p><p>The machine vision utilized in unmanned driving systems must possess the ability to accurately perceive scenes under low-light illumination conditions. To achieve this, photodetectors with low detection limits and a fast response are essential. Current systems rely on avalanche diodes or lidars, which come with the drawbacks of increased energy consumption and complexity. Here, we present an ultrasensitive photodetector based on a two-dimensional (2D) Bi<sub>2</sub>O<sub>2</sub>Se/In<sub>2</sub>S<sub>3</sub> heterostructure, incorporating a homotype unilateral depletion band design. This innovative architecture effectively modulates the transport of both free and photoexcited carriers, suppressing the dark current and facilitating the rapid and efficient separation of photocarriers. Owing to these features, this device exhibits a responsivity of 144 A/W, a specific detectivity of 1.2 × 10<sup>14</sup> Jones, and a light on/off ratio of 1.1 × 10<sup>5</sup>. These metrics rank among the top values reported for state-of-the-art 2D devices. Moreover, this device also demonstrates a fast response time of 170/296 μs and a low noise equivalent power of 0.57 fW/Hz<sup>1/2</sup>, attributes that endow it with ultraweak light imaging capabilities. Furthermore, we have successfully integrated this device into an unmanned driving system, providing a perspective on the design and fabrication of future optoelectronic devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08636","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The machine vision utilized in unmanned driving systems must possess the ability to accurately perceive scenes under low-light illumination conditions. To achieve this, photodetectors with low detection limits and a fast response are essential. Current systems rely on avalanche diodes or lidars, which come with the drawbacks of increased energy consumption and complexity. Here, we present an ultrasensitive photodetector based on a two-dimensional (2D) Bi2O2Se/In2S3 heterostructure, incorporating a homotype unilateral depletion band design. This innovative architecture effectively modulates the transport of both free and photoexcited carriers, suppressing the dark current and facilitating the rapid and efficient separation of photocarriers. Owing to these features, this device exhibits a responsivity of 144 A/W, a specific detectivity of 1.2 × 1014 Jones, and a light on/off ratio of 1.1 × 105. These metrics rank among the top values reported for state-of-the-art 2D devices. Moreover, this device also demonstrates a fast response time of 170/296 μs and a low noise equivalent power of 0.57 fW/Hz1/2, attributes that endow it with ultraweak light imaging capabilities. Furthermore, we have successfully integrated this device into an unmanned driving system, providing a perspective on the design and fabrication of future optoelectronic devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.