Customizing Ionic Liquids Functionalized MOFs Composites with Hydrophobic Interface for Electrochemical CO2 Reduction.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-10-09 Epub Date: 2024-09-24 DOI:10.1021/acsami.4c10640
Jie Wang, Meng Shi, Li-Ping Tang, Sheng-Nan Ruan, Ying-Ying Chao, Peng Chen, Feng-Cui Shen
{"title":"Customizing Ionic Liquids Functionalized MOFs Composites with Hydrophobic Interface for Electrochemical CO<sub>2</sub> Reduction.","authors":"Jie Wang, Meng Shi, Li-Ping Tang, Sheng-Nan Ruan, Ying-Ying Chao, Peng Chen, Feng-Cui Shen","doi":"10.1021/acsami.4c10640","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical carbon dioxide reduction reaction (CO<sub>2</sub>RR) to generate feedstocks for chemical products (e.g., carbon monoxide, CO) offers a highly attractive method for achieving the closure of the carbon cycle. Ionic liquids (ILs)-functionalized Cu-based catalyst Cu<sub>2</sub>O-HKUST-1/IL<sub>1</sub>/PTFE was developed, configuring metal-organic frameworks(MOFs) based materials with high adsorption and multiple active sites. The modified electrocatalysts exhibited high specific surface area, strong CO<sub>2</sub> adsorption capacity, abundant active sites, and fast charge transfer rate. The nucleophilic active site of deprotonation at the C<sub>2</sub> site in imidazole ILs further improved the selectivity of proton migration and CO product generation, which was verified through DFT calculations for the low Gibbs free energy of the generated intermediate interactions. In addition, the hydrophobic interface constructed by PTFE facilitated the inhibition of the hydrogen evolution reaction (HER) and significantly improved the efficiency of CO<sub>2</sub> electroreduction. The Cu<sub>2</sub>O-HKUST-1/IL<sub>1</sub>/PTFE catalyst manifested a high C<sub>1</sub> Faraday efficiency (FE) up to 96.5% and in particular 92.7% for FE<sub>CO</sub> at -1.7 V vs RHE. The present work provides an efficient strategy for configuring ILs-functionalized MOFs-based materials with good hydrophobic interfaces to enhance the efficiency of CO<sub>2</sub> electroreduction to C<sub>1</sub> products.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10640","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) to generate feedstocks for chemical products (e.g., carbon monoxide, CO) offers a highly attractive method for achieving the closure of the carbon cycle. Ionic liquids (ILs)-functionalized Cu-based catalyst Cu2O-HKUST-1/IL1/PTFE was developed, configuring metal-organic frameworks(MOFs) based materials with high adsorption and multiple active sites. The modified electrocatalysts exhibited high specific surface area, strong CO2 adsorption capacity, abundant active sites, and fast charge transfer rate. The nucleophilic active site of deprotonation at the C2 site in imidazole ILs further improved the selectivity of proton migration and CO product generation, which was verified through DFT calculations for the low Gibbs free energy of the generated intermediate interactions. In addition, the hydrophobic interface constructed by PTFE facilitated the inhibition of the hydrogen evolution reaction (HER) and significantly improved the efficiency of CO2 electroreduction. The Cu2O-HKUST-1/IL1/PTFE catalyst manifested a high C1 Faraday efficiency (FE) up to 96.5% and in particular 92.7% for FECO at -1.7 V vs RHE. The present work provides an efficient strategy for configuring ILs-functionalized MOFs-based materials with good hydrophobic interfaces to enhance the efficiency of CO2 electroreduction to C1 products.

Abstract Image

定制具有疏水性界面的离子液体功能化 MOFs 复合材料,用于电化学还原二氧化碳。
通过电化学二氧化碳还原反应(CO2RR)生成化工产品(如一氧化碳、CO)的原料,为实现碳循环的闭合提供了一种极具吸引力的方法。我们开发了离子液体(ILs)功能化的铜基催化剂 Cu2O-HKUST-1/IL1/PTFE,配置了具有高吸附性和多活性位点的金属有机框架(MOFs)材料。改性后的电催化剂比表面积高、二氧化碳吸附能力强、活性位点丰富、电荷转移速率快。咪唑类 IL 中 C2 位点的亲核去质子化活性位点进一步提高了质子迁移和 CO 产物生成的选择性,通过 DFT 计算验证了生成的中间相互作用的吉布斯自由能较低。此外,PTFE 构建的疏水界面有利于抑制氢进化反应(HER),并显著提高了 CO2 的电还原效率。Cu2O-HKUST-1/IL1/PTFE 催化剂的 C1 法拉第效率(FE)高达 96.5%,尤其是在 -1.7 V 相对于 RHE 的条件下,FECO 的效率高达 92.7%。本研究为配置具有良好疏水界面的 ILs 功能化 MOFs 基材料提供了一种有效的策略,以提高 CO2 电还原为 C1 产物的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信