Ming Liu , Miaomiao Hu , Shuang Zou , Haichuan Lu , Jiayu Yu , Jintang Guo
{"title":"Biomimetic anisotropic hydrogel as a smart self-healing agent of sustainable cement-based infrastructure","authors":"Ming Liu , Miaomiao Hu , Shuang Zou , Haichuan Lu , Jiayu Yu , Jintang Guo","doi":"10.1016/j.cemconcomp.2024.105763","DOIUrl":null,"url":null,"abstract":"<div><div>The durability improvement of cement-based infrastructure is an effective strategy to achieve sustainable development and reduce the carbon footprint. In this work, a biomimetic anisotropic hydrogel, alginate/polyacrylamide/halloysite nanotubes hybrid hydrogel (SA/AM/HNTs-RDC), was fabricated as a self-healing agent to enhance the self-healing ability and extend the service life of cement-based infrastructure. The effects of SA/AM/HNTs-RDC hydrogel on the formation and deposition of healing products and the self-healing behavior of cement in the different conditions (water condition and CO<sub>2</sub>-rich condition) were investigated. Compared with the matrix hydrogel (alginate/polyacrylamide, SA/AM), the crosslinking ions and anisotropic microstructure of SA/AM/HNTs-RDC hydrogel can stimulate the massive formation and dense deposition of healing products (ettringite (AFt) and monosulfo aluminate (AFm) in the simulated water condition, calcite and AFt in CO<sub>2</sub>-rich condition) to accelerate the performance recovery of the damaged construction. The self-healing measurements exhibited that the cracks around 200 μm in the cement paste with 1 % anisotropic hydrogel (RDC1) can be sealed completely after 14-day-curing in water, and its recovery ratio of the compressive strength increased by about 10 % compared with control samples. In CO<sub>2</sub>-rich condition, the closure rate of cracks was accelerated and the complete healing of cracks with similar width only needed 7 days. The compressive strength recovery increased by 13.7 % over control samples.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"154 ","pages":"Article 105763"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003366","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability improvement of cement-based infrastructure is an effective strategy to achieve sustainable development and reduce the carbon footprint. In this work, a biomimetic anisotropic hydrogel, alginate/polyacrylamide/halloysite nanotubes hybrid hydrogel (SA/AM/HNTs-RDC), was fabricated as a self-healing agent to enhance the self-healing ability and extend the service life of cement-based infrastructure. The effects of SA/AM/HNTs-RDC hydrogel on the formation and deposition of healing products and the self-healing behavior of cement in the different conditions (water condition and CO2-rich condition) were investigated. Compared with the matrix hydrogel (alginate/polyacrylamide, SA/AM), the crosslinking ions and anisotropic microstructure of SA/AM/HNTs-RDC hydrogel can stimulate the massive formation and dense deposition of healing products (ettringite (AFt) and monosulfo aluminate (AFm) in the simulated water condition, calcite and AFt in CO2-rich condition) to accelerate the performance recovery of the damaged construction. The self-healing measurements exhibited that the cracks around 200 μm in the cement paste with 1 % anisotropic hydrogel (RDC1) can be sealed completely after 14-day-curing in water, and its recovery ratio of the compressive strength increased by about 10 % compared with control samples. In CO2-rich condition, the closure rate of cracks was accelerated and the complete healing of cracks with similar width only needed 7 days. The compressive strength recovery increased by 13.7 % over control samples.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.