{"title":"Space–time topology optimization for anisotropic materials in wire and arc additive manufacturing","authors":"Kai Wu , Weiming Wang , Fred van Keulen , Jun Wu","doi":"10.1016/j.ijmecsci.2024.109712","DOIUrl":null,"url":null,"abstract":"<div><div>Wire and Arc Additive Manufacturing (WAAM) has great potential for efficiently producing large metallic components. However, like other additive manufacturing techniques, materials processed by WAAM exhibit anisotropic properties. Assuming isotropic material properties in design optimization thus leads to less efficient material utilization. Instead of viewing WAAM-induced material anisotropy as a limitation, we consider it an opportunity to improve structural performance. This requires the integration of process planning into structural design. In this paper, we propose a novel method to utilize material anisotropy to enhance the performance of structures both during fabrication and in their use. Our approach is based on space–time topology optimization, which simultaneously optimizes the structural layout and the fabrication sequence. To model material anisotropy in space–time topology optimization, we derive the material deposition direction from the gradient of the pseudo-time field, which encodes the fabrication sequence. Numerical results demonstrate that leveraging material anisotropy effectively improves the performance of intermediate structures during fabrication as well as the overall structure.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109712"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020740324007537/pdfft?md5=6cb6e1b0e3fd63ce43b17fc4eac3b07f&pid=1-s2.0-S0020740324007537-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007537","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wire and Arc Additive Manufacturing (WAAM) has great potential for efficiently producing large metallic components. However, like other additive manufacturing techniques, materials processed by WAAM exhibit anisotropic properties. Assuming isotropic material properties in design optimization thus leads to less efficient material utilization. Instead of viewing WAAM-induced material anisotropy as a limitation, we consider it an opportunity to improve structural performance. This requires the integration of process planning into structural design. In this paper, we propose a novel method to utilize material anisotropy to enhance the performance of structures both during fabrication and in their use. Our approach is based on space–time topology optimization, which simultaneously optimizes the structural layout and the fabrication sequence. To model material anisotropy in space–time topology optimization, we derive the material deposition direction from the gradient of the pseudo-time field, which encodes the fabrication sequence. Numerical results demonstrate that leveraging material anisotropy effectively improves the performance of intermediate structures during fabrication as well as the overall structure.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.