Siqi Wang, Minqiang Wu, Han Han, Ruxue Du, Zhengchuang Zhao, Wenjia Liu, Si Wu, Ruzhu Wang, Tingxian Li
{"title":"Regulating Cold Energy from the Universe by Bifunctional Phase Change Materials for Sustainable Cooling","authors":"Siqi Wang, Minqiang Wu, Han Han, Ruxue Du, Zhengchuang Zhao, Wenjia Liu, Si Wu, Ruzhu Wang, Tingxian Li","doi":"10.1002/aenm.202402667","DOIUrl":null,"url":null,"abstract":"Harvesting cold energy from the universe by radiative cooling (RC) is a promising zero-carbon route for green cooling. However, low power density and spatiotemporal energy mismatch of RC are great challenges for realizing efficient space cooling. Herein, a facile strategy for regulating cold energy from the universe by bifunctional phase change materials (PCM) for sustainable cooling is proposed. A bifunctional phase-change composite film (PCCF) by integrating RC coating with PCM for 24-h cold energy harvesting, storage, and utilization is demonstrated. The bifunctional PCCF can harvest cold energy from the universe and regulate the redundant cold energy generated by nighttime RC to compensate for the cold shortage of daytime RC, realizing flexible regulation of all-day RC and setting new records of cooling power up to 180 W m<sup>−2</sup> with sub-ambient temperature drop of 11.95 °C. The work offers a promising strategy for zero-carbon sustainable cooling by maximizing RC with cold energy storage.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Harvesting cold energy from the universe by radiative cooling (RC) is a promising zero-carbon route for green cooling. However, low power density and spatiotemporal energy mismatch of RC are great challenges for realizing efficient space cooling. Herein, a facile strategy for regulating cold energy from the universe by bifunctional phase change materials (PCM) for sustainable cooling is proposed. A bifunctional phase-change composite film (PCCF) by integrating RC coating with PCM for 24-h cold energy harvesting, storage, and utilization is demonstrated. The bifunctional PCCF can harvest cold energy from the universe and regulate the redundant cold energy generated by nighttime RC to compensate for the cold shortage of daytime RC, realizing flexible regulation of all-day RC and setting new records of cooling power up to 180 W m−2 with sub-ambient temperature drop of 11.95 °C. The work offers a promising strategy for zero-carbon sustainable cooling by maximizing RC with cold energy storage.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.