Jingqi Wang, Tao Wang, Tiantian Mou, Tao Yang, Xu Gao, Xiaodan An, Biao Hu, Jinming Zhang, Xiaoli Zhang, Winnie Deuther-Conrad, Yiyun Huang, Hongmei Jia
{"title":"Novel 18F-Labeled Benzimidazolone-Based Radioligands as Highly Selective Sigma-2 Receptor Probes for Tumor Imaging","authors":"Jingqi Wang, Tao Wang, Tiantian Mou, Tao Yang, Xu Gao, Xiaodan An, Biao Hu, Jinming Zhang, Xiaoli Zhang, Winnie Deuther-Conrad, Yiyun Huang, Hongmei Jia","doi":"10.1021/acs.jmedchem.4c01315","DOIUrl":null,"url":null,"abstract":"Novel sigma-2 (σ<sub>2</sub>) receptor ligands with benzimidazolone and 5,6-dimethoxyisoindoline as pharmacophores were designed and synthesized. Compound <b>4</b> exhibited low nanomolar affinity for the σ<sub>2</sub> receptors (<i>K</i><sub>i</sub>(σ<sub>2</sub>) = 2.30 nM) and high subtype selectivity (<i>K</i><sub>i</sub>(σ<sub>1</sub>)/<i>K</i><sub>i</sub>(σ<sub>2</sub>) > 1500). Radioligand [<sup>18</sup>F]<b>4</b> was prepared in radiochemical yields of 18 ± 7%, with >99% radiochemical purity and molar activity of 244 ± 136 GBq/μmol. Biodistribution and blocking studies in mice and small animal PET/CT imaging in rats indicated highly specific binding of [<sup>18</sup>F]<b>4</b> in organs known to express the σ<sub>2</sub> receptors. Small animal PET/CT imaging with [<sup>18</sup>F]<b>4</b> showed clear visualization of the tumors in subcutaneous A549 lung cancer and U87MG glioma xenografts, and intracranial orthotopic U87MG glioma models. Co-administration of CM398 with [<sup>18</sup>F]<b>4</b> significantly reduced activity uptake in the tumors, indicating that [<sup>18</sup>F]<b>4</b> specifically binds to the σ<sub>2</sub> receptors expressed in A549 and U87MG xenografts.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"49 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01315","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel sigma-2 (σ2) receptor ligands with benzimidazolone and 5,6-dimethoxyisoindoline as pharmacophores were designed and synthesized. Compound 4 exhibited low nanomolar affinity for the σ2 receptors (Ki(σ2) = 2.30 nM) and high subtype selectivity (Ki(σ1)/Ki(σ2) > 1500). Radioligand [18F]4 was prepared in radiochemical yields of 18 ± 7%, with >99% radiochemical purity and molar activity of 244 ± 136 GBq/μmol. Biodistribution and blocking studies in mice and small animal PET/CT imaging in rats indicated highly specific binding of [18F]4 in organs known to express the σ2 receptors. Small animal PET/CT imaging with [18F]4 showed clear visualization of the tumors in subcutaneous A549 lung cancer and U87MG glioma xenografts, and intracranial orthotopic U87MG glioma models. Co-administration of CM398 with [18F]4 significantly reduced activity uptake in the tumors, indicating that [18F]4 specifically binds to the σ2 receptors expressed in A549 and U87MG xenografts.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.