Enhanced Hydrogen Bonding Through Strong Water-Locking Additives for Long-Term Cycling of Zinc Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruheng Jiang, Tuoya Naren, Yuejiao Chen, Zhao Chen, Chunxiao Zhang, Yiman Xie, Libao Chen, Yuyang Qi, Qingfei Meng, Weifeng Wei, Liangjun Zhou
{"title":"Enhanced Hydrogen Bonding Through Strong Water-Locking Additives for Long-Term Cycling of Zinc Ion Batteries","authors":"Ruheng Jiang, Tuoya Naren, Yuejiao Chen, Zhao Chen, Chunxiao Zhang, Yiman Xie, Libao Chen, Yuyang Qi, Qingfei Meng, Weifeng Wei, Liangjun Zhou","doi":"10.1002/adfm.202411477","DOIUrl":null,"url":null,"abstract":"The promising energy storage devices, zinc ion batteries (ZIBs), face challenges such as dendritic growth and side reactions, which hinder their application and development. As a polar group, hydroxyl groups can utilize hydrogen bonding to stably anchor water molecules, preventing contact between water and the anode. Moreover, they can attract and guide Zn<sup>2+</sup> to rapidly and uniformly deposit on the anode. Here, the introduction of multi-hydroxyl water-locking additive Lactobionic acid (LA) molecules is proposed into conventional electrolytes. Through an in situ reaction between the highly reactive carboxyl groups on LA molecules and the zinc anode, a stable multi-hydroxyl protective layer is formed on the anode surface, effectively preventing interface corrosion and dendritic growth. As a result, the Zn||Zn symmetric cell with LA exhibits remarkable performance, cycling for 2300 h under 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>. Even under more rigorous conditions of 10 mA cm<sup>−2</sup> and 10 mAh cm<sup>−2</sup>, it maintains over 800 h of cycling durability. Moreover, in the Zn||NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> full cell configuration, an impressive capacity retention rate of 80.35% after 2000 cycles at a current density of 5 A g<sup>−1</sup>. This innovative method can open a new avenue for designing high-performance ZIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411477","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The promising energy storage devices, zinc ion batteries (ZIBs), face challenges such as dendritic growth and side reactions, which hinder their application and development. As a polar group, hydroxyl groups can utilize hydrogen bonding to stably anchor water molecules, preventing contact between water and the anode. Moreover, they can attract and guide Zn2+ to rapidly and uniformly deposit on the anode. Here, the introduction of multi-hydroxyl water-locking additive Lactobionic acid (LA) molecules is proposed into conventional electrolytes. Through an in situ reaction between the highly reactive carboxyl groups on LA molecules and the zinc anode, a stable multi-hydroxyl protective layer is formed on the anode surface, effectively preventing interface corrosion and dendritic growth. As a result, the Zn||Zn symmetric cell with LA exhibits remarkable performance, cycling for 2300 h under 1 mA cm−2 and 1 mAh cm−2. Even under more rigorous conditions of 10 mA cm−2 and 10 mAh cm−2, it maintains over 800 h of cycling durability. Moreover, in the Zn||NH4V4O10 full cell configuration, an impressive capacity retention rate of 80.35% after 2000 cycles at a current density of 5 A g−1. This innovative method can open a new avenue for designing high-performance ZIBs.

Abstract Image

通过强锁水添加剂增强氢键,实现锌离子电池的长期循环
锌离子电池(ZIBs)这种前景广阔的储能设备面临着树枝状生长和副反应等挑战,阻碍了其应用和发展。羟基作为极性基团,可以利用氢键稳定地锚定水分子,防止水与阳极接触。此外,它们还能吸引和引导 Zn2+ 快速、均匀地沉积在阳极上。在此,我们提出在传统电解质中引入多羟基锁水添加剂乳糖酸(LA)分子。通过 LA 分子上的高活性羧基与锌阳极之间的原位反应,在阳极表面形成稳定的多羟基保护层,有效防止界面腐蚀和树枝状生长。因此,带有 LA 的锌|||锌对称电池表现出卓越的性能,在 1 mA cm-2 和 1 mAh cm-2 条件下可循环使用 2300 小时。即使在 10 mA cm-2 和 10 mAh cm-2 的更苛刻条件下,它也能保持超过 800 小时的循环耐久性。此外,在 Zn||NH4V4O10 全电池配置中,电流密度为 5 A g-1 时,经过 2000 次循环后,容量保持率达到 80.35%,令人印象深刻。这种创新方法为设计高性能 ZIB 开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信