Aili Wang , Rong Yan , Haixia Li , Xiaodan Sun , Weike Zhou , Stacey R. Smith?
{"title":"A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer","authors":"Aili Wang , Rong Yan , Haixia Li , Xiaodan Sun , Weike Zhou , Stacey R. Smith?","doi":"10.1016/j.mbs.2024.109301","DOIUrl":null,"url":null,"abstract":"<div><div>Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function: therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-independent cells (AC-Is) is greater than the threshold value <span><math><mrow><mi>E</mi><mi>T</mi></mrow></math></span>, and it is suspended once the population is less than <span><math><mrow><mi>E</mi><mi>T</mi></mrow></math></span>. As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we choose a suitable threshold value.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"377 ","pages":"Article 109301"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function: therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-independent cells (AC-Is) is greater than the threshold value , and it is suspended once the population is less than . As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we choose a suitable threshold value.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.