Online control parameter optimization design for multi-machine coordinated loading system of hazardous substances

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zuoxun Wang, Chuanyu Cui, Jinxue Sui, Changkun Guo
{"title":"Online control parameter optimization design for multi-machine coordinated loading system of hazardous substances","authors":"Zuoxun Wang,&nbsp;Chuanyu Cui,&nbsp;Jinxue Sui,&nbsp;Changkun Guo","doi":"10.1016/j.isatra.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>To address the parameter instability issues in hazardous materials handling during multi-machine loading and unloading operations, we propose a Full-Scale Smart Parameter Optimization Control (FSPOC) system specifically designed for multi-machine coordination. This system leverages a novel fish scale prediction algorithm tailored for cooperative multi-machine environments. Initially, the fish scale prediction algorithm, inspired by bionic fish scales, is developed to predict future system behavior by analyzing historical data. Building on this algorithm, we introduce a disturbance cancellation control theorem and design a parameter optimization controller to enhance stability in high-dimensional nonlinear spaces. The FSPOC method is then applied to a multi-machine cooperative system, enabling online distributed parameter optimization for complex systems with multiple degrees of freedom. The effectiveness of the proposed method was validated through simulations, where it was compared with two other optimization techniques: Genetic Algorithm-based PID (GAPID) and Chaotic Atomic Search Algorithm-based PID (CHASO). The simulation results confirm the superiority of the FSPOC method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"154 ","pages":"Pages 213-227"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004269","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the parameter instability issues in hazardous materials handling during multi-machine loading and unloading operations, we propose a Full-Scale Smart Parameter Optimization Control (FSPOC) system specifically designed for multi-machine coordination. This system leverages a novel fish scale prediction algorithm tailored for cooperative multi-machine environments. Initially, the fish scale prediction algorithm, inspired by bionic fish scales, is developed to predict future system behavior by analyzing historical data. Building on this algorithm, we introduce a disturbance cancellation control theorem and design a parameter optimization controller to enhance stability in high-dimensional nonlinear spaces. The FSPOC method is then applied to a multi-machine cooperative system, enabling online distributed parameter optimization for complex systems with multiple degrees of freedom. The effectiveness of the proposed method was validated through simulations, where it was compared with two other optimization techniques: Genetic Algorithm-based PID (GAPID) and Chaotic Atomic Search Algorithm-based PID (CHASO). The simulation results confirm the superiority of the FSPOC method.
危险物质多机协调装载系统的在线控制参数优化设计。
为了解决多机装卸作业过程中危险品装卸的参数不稳定性问题,我们提出了一种专为多机协同设计的全尺度智能参数优化控制(FSPOC)系统。该系统利用专为多机协同环境定制的新型鱼鳞预测算法。最初,鱼鳞预测算法的灵感来自仿生鱼鳞,通过分析历史数据来预测未来的系统行为。在此算法的基础上,我们引入了干扰消除控制定理,并设计了参数优化控制器,以增强高维非线性空间中的稳定性。然后,我们将 FSPOC 方法应用于多机协同系统,实现了多自由度复杂系统的在线分布式参数优化。通过模拟验证了所提方法的有效性,并与其他两种优化技术进行了比较:基于遗传算法的 PID(GAPID)和基于混沌原子搜索算法的 PID(CHASO)。模拟结果证实了 FSPOC 方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信