{"title":"Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises.","authors":"Jie Wang, Jiacheng He, Bei Peng, Gang Wang","doi":"10.1016/j.isatra.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.