Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises.

Jie Wang, Jiacheng He, Bei Peng, Gang Wang
{"title":"Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises.","authors":"Jie Wang, Jiacheng He, Bei Peng, Gang Wang","doi":"10.1016/j.isatra.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.

用于非高斯噪声下机动目标跟踪的广义交互多模型卡尔曼滤波算法。
传统的交互式多模型卡尔曼滤波算法(IMM-KF)可以通过在可能的运动模型之间进行软切换来处理高斯噪声下的机动目标问题。实际上,在处理非高斯噪声时,其性能可能会下降。我们在 IMM-KF 中引入了高斯混合物模型(GMM),利用 GMM 将非高斯测量噪声建模为具有一定概率的多个高斯概率密度的混合物。然后,提出了一种 GIMM 框架,它能在多种可能的运动和噪声模型之间进行精确切换和融合。并结合卡尔曼滤波(KF),提出了一种 GIMM-KF 算法,可在非高斯噪声条件下对机动目标进行精确的状态估计。随后提供的模拟和实验验证了 GIMM-KF 算法在准确性、稳定性和鲁棒性方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信