Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar
{"title":"Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents.","authors":"Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar","doi":"10.1007/s40203-024-00261-w","DOIUrl":null,"url":null,"abstract":"<p><p>Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"83"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00261-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.