Significant metabolic alterations in mouse dams exposed to an environmental mixture of polychlorinated biphenyls (PCBs) during gestation and lactation: Insights into PCB and metabolite profiles
Xueshu Li , Youjun P. Suh , Rebecca J. Wilson , Pamela J. Lein , Julia Y. Cui , Hans-Joachim Lehmler
{"title":"Significant metabolic alterations in mouse dams exposed to an environmental mixture of polychlorinated biphenyls (PCBs) during gestation and lactation: Insights into PCB and metabolite profiles","authors":"Xueshu Li , Youjun P. Suh , Rebecca J. Wilson , Pamela J. Lein , Julia Y. Cui , Hans-Joachim Lehmler","doi":"10.1016/j.etap.2024.104567","DOIUrl":null,"url":null,"abstract":"<div><div>Polychlorinated biphenyls (PCBs) and their metabolites are linked to developmental neurotoxicity, but their levels in the gestational and lactational environment remain unexplored. This study investigated the effects of dietary exposure to the Fox River Mixture (FRM) on serum levels of PCBs and their metabolites in female C57BL/6 J mice. Mice were exposed to 0.1, 1.0, or 6.0 mg/kg body weight/day of FRM beginning two weeks before mating and throughout gestation and lactation. Serum samples collected from the dams at weaning were analyzed using gas chromatograph-tandem mass spectrometry and nontarget liquid chromatography-high resolution mass spectrometry. Results showed complex and dose-dependent differences in PCB and metabolite profiles. Untargeted metabolomics revealed alterations in metabolites involved in glucuronidation. Network analysis suggested disturbances in heme and amino acid metabolism associated with higher chlorinated PCBs. These findings suggested that PCBs and metabolites present in the gestational and lactation environment of mice may contribute to developmental neurotoxicity in rodents.</div></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924002072","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polychlorinated biphenyls (PCBs) and their metabolites are linked to developmental neurotoxicity, but their levels in the gestational and lactational environment remain unexplored. This study investigated the effects of dietary exposure to the Fox River Mixture (FRM) on serum levels of PCBs and their metabolites in female C57BL/6 J mice. Mice were exposed to 0.1, 1.0, or 6.0 mg/kg body weight/day of FRM beginning two weeks before mating and throughout gestation and lactation. Serum samples collected from the dams at weaning were analyzed using gas chromatograph-tandem mass spectrometry and nontarget liquid chromatography-high resolution mass spectrometry. Results showed complex and dose-dependent differences in PCB and metabolite profiles. Untargeted metabolomics revealed alterations in metabolites involved in glucuronidation. Network analysis suggested disturbances in heme and amino acid metabolism associated with higher chlorinated PCBs. These findings suggested that PCBs and metabolites present in the gestational and lactation environment of mice may contribute to developmental neurotoxicity in rodents.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.