A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.

IF 5.1 Q2 CELL BIOLOGY
Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau
{"title":"A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.","authors":"Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau","doi":"10.1093/function/zqae042","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl l-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqae042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl l-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.

骨骼肌介导的血管张力抗收缩反应:揭示股动脉的乳酸-AMPK-NOS1 通路
血管周围组织对血管张力的调节是各种旁分泌因子复杂相互作用的结果。在此,我们研究了股动脉和颈动脉周围骨骼肌的抗收缩效应及其内在机制。我们使用雄性和雌性 Wistar 大鼠证明了血清素、苯肾上腺素和 U-46619 在股动脉环中诱导的浓度依赖性血管收缩反应。有趣的是,这种反应在周围有股骨骼肌存在的情况下会减弱,与性别无关。当颈动脉暴露于其周围的骨骼肌时,未观察到抗收缩效应。即使在没有内皮和肌肉与动脉分离的情况下,在股动脉中观察到的效应仍然存在。此外,股动脉周围的骨骼肌还能促进其他三个血管床(基底动脉、肠系膜动脉和颈动脉)的抗收缩效应。我们使用乳酸脱氢酶抑制剂和 1/4 单羧酸盐转运体抑制剂证实了乳酸的参与,因为这两种抑制剂都能消除抗收缩效应。然而,乳酸盐并不直接促进血管扩张,而是通过激活骨骼肌中的 5' AMP 激活蛋白激酶(AMPK)和神经元一氧化氮合酶(NOS1)来发挥其作用。因此,NOS1 的特异性抑制剂 Nω-丙基 L-精氨酸阻止了抗收缩效应,也阻止了乳酸诱导的原发性骨骼肌细胞中 NOS1 在刺激性丝氨酸位点(1417)的磷酸化。在有选择性 AMPK 抑制剂 Bay-3827 存在的情况下,NOS1 的磷酸化会减少。总之,股动脉相关骨骼肌是一个强有力的旁分泌和内分泌器官,对两性血管张力都有影响。从机理上讲,抗收缩效应涉及肌肉纤维类型和/或其解剖位置,但与动脉类型或其相关血管内皮无关。最后,股动脉的抗收缩效应是由乳酸-AMPK-磷酸-NOS1Ser1417-NO 信号轴介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信