Identification of a highly efficient chloroplast-targeting peptide for plastid engineering.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-09-19 eCollection Date: 2024-09-01 DOI:10.1371/journal.pbio.3002785
Chonprakun Thagun, Masaki Odahara, Yutaka Kodama, Keiji Numata
{"title":"Identification of a highly efficient chloroplast-targeting peptide for plastid engineering.","authors":"Chonprakun Thagun, Masaki Odahara, Yutaka Kodama, Keiji Numata","doi":"10.1371/journal.pbio.3002785","DOIUrl":null,"url":null,"abstract":"<p><p>Plastids are pivotal target organelles for comprehensively enhancing photosynthetic and metabolic traits in plants via plastid engineering. Plastidial proteins predominantly originate in the nucleus and must traverse membrane-bound multiprotein translocons to access these organelles. This import process is meticulously regulated by chloroplast-targeting peptides (cTPs). Whereas many cTPs have been employed to guide recombinantly expressed functional proteins to chloroplasts, there is a critical need for more efficient cTPs. Here, we performed a comprehensive exploration and comparative assessment of an advanced suite of cTPs exhibiting superior targeting capabilities. We employed a multifaceted approach encompassing computational prediction, in planta expression, fluorescence tracking, and in vitro chloroplast import studies to identify and analyze 88 cTPs associated with Arabidopsis thaliana mutants with phenotypes linked to chloroplast function. These polypeptides exhibited distinct abilities to transport green fluorescent protein (GFP) to various compartments within leaf cells, particularly chloroplasts. A highly efficient cTP derived from Arabidopsis plastid ribosomal protein L35 (At2g24090) displayed remarkable effectiveness in chloroplast localization. This cTP facilitated the activities of chloroplast-targeted RNA-processing proteins and metabolic enzymes within plastids. This cTP could serve as an ideal transit peptide for precisely targeting biomolecules to plastids, leading to advancements in plastid engineering.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002785","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plastids are pivotal target organelles for comprehensively enhancing photosynthetic and metabolic traits in plants via plastid engineering. Plastidial proteins predominantly originate in the nucleus and must traverse membrane-bound multiprotein translocons to access these organelles. This import process is meticulously regulated by chloroplast-targeting peptides (cTPs). Whereas many cTPs have been employed to guide recombinantly expressed functional proteins to chloroplasts, there is a critical need for more efficient cTPs. Here, we performed a comprehensive exploration and comparative assessment of an advanced suite of cTPs exhibiting superior targeting capabilities. We employed a multifaceted approach encompassing computational prediction, in planta expression, fluorescence tracking, and in vitro chloroplast import studies to identify and analyze 88 cTPs associated with Arabidopsis thaliana mutants with phenotypes linked to chloroplast function. These polypeptides exhibited distinct abilities to transport green fluorescent protein (GFP) to various compartments within leaf cells, particularly chloroplasts. A highly efficient cTP derived from Arabidopsis plastid ribosomal protein L35 (At2g24090) displayed remarkable effectiveness in chloroplast localization. This cTP facilitated the activities of chloroplast-targeted RNA-processing proteins and metabolic enzymes within plastids. This cTP could serve as an ideal transit peptide for precisely targeting biomolecules to plastids, leading to advancements in plastid engineering.

鉴定用于质体工程的高效叶绿体靶向肽。
质体是通过质体工程全面提高植物光合作用和代谢特性的关键目标细胞器。质体蛋白主要来源于细胞核,必须穿过膜结合多蛋白转运体才能进入这些细胞器。这一导入过程受到叶绿体靶向肽(cTPs)的严格调控。虽然许多 cTPs 已被用于引导重组表达的功能蛋白进入叶绿体,但目前亟需更高效的 cTPs。在此,我们对一套先进的 cTPs 进行了全面的探索和比较评估,这些 cTPs 具有卓越的靶向能力。我们采用了包括计算预测、植物体表达、荧光跟踪和体外叶绿体导入研究在内的多方面方法,鉴定并分析了 88 种与拟南芥突变体相关的 cTPs,这些突变体具有与叶绿体功能相关的表型。这些多肽在将绿色荧光蛋白(GFP)转运到叶肉细胞内的各个区室,尤其是叶绿体方面表现出不同的能力。源自拟南芥质体核糖体蛋白 L35(At2g24090)的高效 cTP 在叶绿体定位方面表现出显著的功效。这种 cTP 促进了叶绿体靶向 RNA 处理蛋白和代谢酶在质体内的活动。这种 cTP 可作为一种理想的转运肽,将生物大分子精确定位到质体,从而推动质体工程学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信