A workflow for human-centered machine-assisted hypothesis generation: Commentary on Banker et al. (2024).

IF 12.3 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Alejandro Hermida Carrillo, Clemens Stachl, Sanaz Talaifar
{"title":"A workflow for human-centered machine-assisted hypothesis generation: Commentary on Banker et al. (2024).","authors":"Alejandro Hermida Carrillo, Clemens Stachl, Sanaz Talaifar","doi":"10.1037/amp0001256","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have the potential to revolutionize a key aspect of the scientific process-hypothesis generation. Banker et al. (2024) investigate how GPT-3 and GPT-4 can be used to generate novel hypotheses useful for social psychologists. Although timely, we argue that their approach overlooks the limitations of both humans and LLMs and does not incorporate crucial information on the inquiring researcher's inner world (e.g., values, goals) and outer world (e.g., existing literature) into the hypothesis generation process. Instead, we propose a human-centered workflow (Hope et al., 2023) that recognizes the limitations and capabilities of both the researchers and LLMs. Our workflow features a process of iterative engagement between researchers and GPT-4 that augments-rather than displaces-each researcher's unique role in the hypothesis generation process. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":48468,"journal":{"name":"American Psychologist","volume":"79 6","pages":"800-802"},"PeriodicalIF":12.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Psychologist","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/amp0001256","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have the potential to revolutionize a key aspect of the scientific process-hypothesis generation. Banker et al. (2024) investigate how GPT-3 and GPT-4 can be used to generate novel hypotheses useful for social psychologists. Although timely, we argue that their approach overlooks the limitations of both humans and LLMs and does not incorporate crucial information on the inquiring researcher's inner world (e.g., values, goals) and outer world (e.g., existing literature) into the hypothesis generation process. Instead, we propose a human-centered workflow (Hope et al., 2023) that recognizes the limitations and capabilities of both the researchers and LLMs. Our workflow features a process of iterative engagement between researchers and GPT-4 that augments-rather than displaces-each researcher's unique role in the hypothesis generation process. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

以人为本的机器辅助假设生成工作流程:对 Banker 等人(2024 年)的评论。
大型语言模型(LLM)有可能彻底改变科学过程的一个关键方面--假设的产生。Banker 等人(2024 年)研究了如何利用 GPT-3 和 GPT-4 生成对社会心理学家有用的新假设。虽然这种方法很及时,但我们认为,他们的方法忽视了人类和 LLM 的局限性,没有将探究研究者内心世界(如价值观、目标)和外部世界(如现有文献)的关键信息纳入假设生成过程。相反,我们提出了一种以人为本的工作流程(Hope et al.我们的工作流程以研究人员和 GPT-4 之间的迭代参与过程为特色,它增强而非取代了每位研究人员在假设生成过程中的独特角色。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Psychologist
American Psychologist PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
18.50
自引率
1.20%
发文量
145
期刊介绍: Established in 1946, American Psychologist® is the flagship peer-reviewed scholarly journal of the American Psychological Association. It publishes high-impact papers of broad interest, including empirical reports, meta-analyses, and scholarly reviews, covering psychological science, practice, education, and policy. Articles often address issues of national and international significance within the field of psychology and its relationship to society. Published in an accessible style, contributions in American Psychologist are designed to be understood by both psychologists and the general public.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信