What makes us feel good? A data-driven investigation of positive emotion experience.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Roza G Kamiloğlu, İnan Utku Türkmen, Taha Eren Sarnıç, Dana Landman, Disa A Sauter
{"title":"What makes us feel good? A data-driven investigation of positive emotion experience.","authors":"Roza G Kamiloğlu, İnan Utku Türkmen, Taha Eren Sarnıç, Dana Landman, Disa A Sauter","doi":"10.1037/emo0001417","DOIUrl":null,"url":null,"abstract":"<p><p>What does it mean to feel good? Is our experience of gazing in awe at a majestic mountain fundamentally different than erupting with triumph when our favorite team wins the championship? Here, we use a semantic space approach to test which positive emotional experiences are distinct from each other based on in-depth personal narratives of experiences involving 22 positive emotions (<i>n</i> = 165; 3,592 emotional events). A bottom-up computational analysis was applied to the transcribed text, with unsupervised clustering employed to maximize internal granular consistency (i.e., the clusters being maximally different and maximally internally homogeneous). The analysis yielded four emotions that map onto distinct clusters of subjective experiences: amusement, interest, lust, and tenderness. The application of the semantic space approach to in-depth personal accounts yields a nuanced understanding of positive emotional experiences. Moreover, this analytical method allows for the bottom-up development of emotion taxonomies, showcasing its potential for broader applications in the study of subjective experiences. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/emo0001417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

What does it mean to feel good? Is our experience of gazing in awe at a majestic mountain fundamentally different than erupting with triumph when our favorite team wins the championship? Here, we use a semantic space approach to test which positive emotional experiences are distinct from each other based on in-depth personal narratives of experiences involving 22 positive emotions (n = 165; 3,592 emotional events). A bottom-up computational analysis was applied to the transcribed text, with unsupervised clustering employed to maximize internal granular consistency (i.e., the clusters being maximally different and maximally internally homogeneous). The analysis yielded four emotions that map onto distinct clusters of subjective experiences: amusement, interest, lust, and tenderness. The application of the semantic space approach to in-depth personal accounts yields a nuanced understanding of positive emotional experiences. Moreover, this analytical method allows for the bottom-up development of emotion taxonomies, showcasing its potential for broader applications in the study of subjective experiences. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

是什么让我们感觉良好?对积极情绪体验的数据驱动调查。
感觉良好意味着什么?我们对雄伟高山的敬畏之情与我们最喜爱的球队夺冠时的喜悦之情是否有本质区别?在此,我们使用语义空间方法,根据涉及 22 种积极情绪的个人深度叙述(n = 165;3,592 个情绪事件),测试哪些积极情绪体验彼此不同。我们对转录文本进行了自下而上的计算分析,并采用了无监督聚类,以最大限度地提高内部粒度一致性(即聚类具有最大程度的差异和最大程度的内部同质性)。分析得出了四种情绪,分别映射到主观体验的不同聚类上:娱乐、兴趣、欲望和温柔。将语义空间方法应用于深入的个人陈述,可以获得对积极情绪体验的细致入微的理解。此外,这种分析方法允许自下而上地发展情绪分类法,展示了其在主观体验研究中更广泛应用的潜力。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信