{"title":"Sleep and memory consolidation in healthy, neurotypical children, and adults: a summary of systematic reviews and meta-analyses.","authors":"Anna Weighall, Ian Kellar","doi":"10.1042/ETLS20230110","DOIUrl":null,"url":null,"abstract":"<p><p>This review systematically assesses the impact of sleep on memory and cognition in healthy individuals across different life stages. It specifically examines how sleep affects memory processes in children, adults, and older adults. The methodology involved a comprehensive literature search, starting with 46 known papers. Keywords and Mesh terms related to sleep and memory consolidation were derived using the Word Frequency Analysis tool in SR Accelerator and Mesh on Demand. A detailed search on PubMed yielded a large set of records. Classifier training on 4854 decisions, these were narrowed down to 1437 papers for full-text screening, culminating in 19 systematic reviews and meta-analyses. Sleep enhances memory consolidation, especially for complex declarative information. While the role of sleep in procedural memory consolidation in children remains less robust compared to declarative memory, findings suggest potential but inconsistent benefits. Sleep improves prospective memory consolidation and aids in complex associative memory tasks. Memory reactivation during sleep, specifically slow-wave sleep, and spindles are implicated in memory consolidation. Meta-analytic evidence suggests that while sleep benefits both emotional and neutral memory consolidation, there is no strong preferential effect of sleep on emotional memory in comparison to neutral memory. In older adults, there is a noticeable reduction in sleep-dependent memory consolidation, particularly for declarative memory, likely linked to a decline in slow-wave sleep. This suggests a decrease in the benefits of sleep for memory consolidation with aging. Overall, the review underscores the importance of sleep in memory processes across all ages, highlighting variations in its impact on different types of memory and across age groups. It points to future research directions for enhancing understanding and practical applications in clinical and educational settings.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review systematically assesses the impact of sleep on memory and cognition in healthy individuals across different life stages. It specifically examines how sleep affects memory processes in children, adults, and older adults. The methodology involved a comprehensive literature search, starting with 46 known papers. Keywords and Mesh terms related to sleep and memory consolidation were derived using the Word Frequency Analysis tool in SR Accelerator and Mesh on Demand. A detailed search on PubMed yielded a large set of records. Classifier training on 4854 decisions, these were narrowed down to 1437 papers for full-text screening, culminating in 19 systematic reviews and meta-analyses. Sleep enhances memory consolidation, especially for complex declarative information. While the role of sleep in procedural memory consolidation in children remains less robust compared to declarative memory, findings suggest potential but inconsistent benefits. Sleep improves prospective memory consolidation and aids in complex associative memory tasks. Memory reactivation during sleep, specifically slow-wave sleep, and spindles are implicated in memory consolidation. Meta-analytic evidence suggests that while sleep benefits both emotional and neutral memory consolidation, there is no strong preferential effect of sleep on emotional memory in comparison to neutral memory. In older adults, there is a noticeable reduction in sleep-dependent memory consolidation, particularly for declarative memory, likely linked to a decline in slow-wave sleep. This suggests a decrease in the benefits of sleep for memory consolidation with aging. Overall, the review underscores the importance of sleep in memory processes across all ages, highlighting variations in its impact on different types of memory and across age groups. It points to future research directions for enhancing understanding and practical applications in clinical and educational settings.