Comparison of rhythmic jaw muscle activities induced by electrical stimulations of the corticobulbar tract during rapid eye movement sleep with those during wakefulness and non-rapid eye movement sleep in freely moving guinea pigs.
{"title":"Comparison of rhythmic jaw muscle activities induced by electrical stimulations of the corticobulbar tract during rapid eye movement sleep with those during wakefulness and non-rapid eye movement sleep in freely moving guinea pigs.","authors":"Makoto Higashiyama, Yuji Masuda, Ayano Katagiri, Hiroki Toyoda, Masaharu Yamada, Atsushi Yoshida, Takafumi Kato","doi":"10.1016/j.job.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Rhythmic jaw muscle activities (RJMAs) occur during rapid eye movement (REM) sleep in humans and animals even though motoneurons are inhibited. The present study compared the characteristics of jaw muscle activities induced by electrical microstimulations of the corticobulbar tract (CT) during REM sleep with those during wakefulness and non-REM sleep.</p><p><strong>Methods: </strong>Eleven guinea pigs were surgically prepared for polygraphic recordings with the implantation of a stimulating electrode. Long- and short-train repetitive electrical microstimulations were applied to the CT under freely moving conditions. The response rate, latency, burst amplitude, and cycle length in the digastric muscle were calculated and cortical and cardiac activities were quantified.</p><p><strong>Results: </strong>Long-train microstimulations induced RJMAs in the digastric muscle followed by masseter muscle activity during wakefulness and non-REM sleep and only induced rhythmic digastric muscle activity during REM sleep. The response rate of RJMAs and the burst amplitude of digastric muscles were significantly lower during REM sleep than during wakefulness and non-REM sleep. However, response latency did not significantly differ between REM sleep and wakefulness. Transient cortical and cardiac changes were associated with RJMAs induced during non-REM sleep, but not during REM sleep. Short-train microstimulations induced a short-latency digastric response, the amplitude of which was significantly lower during REM sleep than during non-REM sleep and wakefulness.</p><p><strong>Conclusions: </strong>These results suggest that the masticatory CPG was activated by electrical CT stimulations independently of the motoneuron inhibitory system during REM sleep.</p>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.job.2024.09.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Rhythmic jaw muscle activities (RJMAs) occur during rapid eye movement (REM) sleep in humans and animals even though motoneurons are inhibited. The present study compared the characteristics of jaw muscle activities induced by electrical microstimulations of the corticobulbar tract (CT) during REM sleep with those during wakefulness and non-REM sleep.
Methods: Eleven guinea pigs were surgically prepared for polygraphic recordings with the implantation of a stimulating electrode. Long- and short-train repetitive electrical microstimulations were applied to the CT under freely moving conditions. The response rate, latency, burst amplitude, and cycle length in the digastric muscle were calculated and cortical and cardiac activities were quantified.
Results: Long-train microstimulations induced RJMAs in the digastric muscle followed by masseter muscle activity during wakefulness and non-REM sleep and only induced rhythmic digastric muscle activity during REM sleep. The response rate of RJMAs and the burst amplitude of digastric muscles were significantly lower during REM sleep than during wakefulness and non-REM sleep. However, response latency did not significantly differ between REM sleep and wakefulness. Transient cortical and cardiac changes were associated with RJMAs induced during non-REM sleep, but not during REM sleep. Short-train microstimulations induced a short-latency digastric response, the amplitude of which was significantly lower during REM sleep than during non-REM sleep and wakefulness.
Conclusions: These results suggest that the masticatory CPG was activated by electrical CT stimulations independently of the motoneuron inhibitory system during REM sleep.