Temperature-Dependent Changes in Resolution and Coercivity of Superparamagnetic and Superferromagnetic Iron Oxide Nanoparticles.

Q4 Medicine
Owen Doyle, Jacob Bryan, Melissa Kim, Chinmoy Saayujya, Sophie Nazarian, Javier Mokkarala-Lopez, Renesmee Kuo, Mariam Yousuf, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly
{"title":"Temperature-Dependent Changes in Resolution and Coercivity of Superparamagnetic and Superferromagnetic Iron Oxide Nanoparticles.","authors":"Owen Doyle, Jacob Bryan, Melissa Kim, Chinmoy Saayujya, Sophie Nazarian, Javier Mokkarala-Lopez, Renesmee Kuo, Mariam Yousuf, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly","doi":"10.18416/IJMPI.2023.2303056","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Particle Imaging (MPI) is a tracer-based imaging modality with immense promise as a radiation-free alternative to nuclear medicine imaging techniques. Nuclear medicine requires \"hot chemistry\" wherein radioactive tracers must be synthesized on-site, requiring expensive infrastructure and labor costs. MPI's magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIOs), have no significant signal decay over time which removes cost barriers associated with nuclear medicine studies such as FDG-PET. While SPIOs are the current industry standard MPI tracer, recent developments in synthesizing superferromagnetic iron oxide nanoparticles (SFMIOs) and high resolution SPIOs (HR-SPIOs), a new class of nanoparticle with almost zero coercivity, have yielded a 30-fold improvement in resolution (0.4 mT) and SNR. To better understand the long-term performance of these new nanoparticles, this investigation reports changes in SPIO (VivoTrax Plus), HR-SPIO, and SFMIO resolution, along with SFMIO coercivity, at low temperatures (-2, 2 °C) and room temperature (18-22 °C) over 12 weeks. We find that changes in HR-SPIO resolution are more sensitive to storage temperature than SFMIOs. Additionally, we observe no appreciable difference in SFMIO coercivity between the two temperatures over time. These results can inform research on optimizing tracer synthesis while lending practical information to future hospitals about the highly accessible conditions for the transit and storage of tracers.</p>","PeriodicalId":36734,"journal":{"name":"International Journal on Magnetic Particle Imaging","volume":"9 1 Suppl1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Magnetic Particle Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18416/IJMPI.2023.2303056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Particle Imaging (MPI) is a tracer-based imaging modality with immense promise as a radiation-free alternative to nuclear medicine imaging techniques. Nuclear medicine requires "hot chemistry" wherein radioactive tracers must be synthesized on-site, requiring expensive infrastructure and labor costs. MPI's magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIOs), have no significant signal decay over time which removes cost barriers associated with nuclear medicine studies such as FDG-PET. While SPIOs are the current industry standard MPI tracer, recent developments in synthesizing superferromagnetic iron oxide nanoparticles (SFMIOs) and high resolution SPIOs (HR-SPIOs), a new class of nanoparticle with almost zero coercivity, have yielded a 30-fold improvement in resolution (0.4 mT) and SNR. To better understand the long-term performance of these new nanoparticles, this investigation reports changes in SPIO (VivoTrax Plus), HR-SPIO, and SFMIO resolution, along with SFMIO coercivity, at low temperatures (-2, 2 °C) and room temperature (18-22 °C) over 12 weeks. We find that changes in HR-SPIO resolution are more sensitive to storage temperature than SFMIOs. Additionally, we observe no appreciable difference in SFMIO coercivity between the two temperatures over time. These results can inform research on optimizing tracer synthesis while lending practical information to future hospitals about the highly accessible conditions for the transit and storage of tracers.

超顺磁性和超铁磁性氧化铁纳米粒子的分辨率和矫顽力随温度的变化。
磁粉成像(MPI)是一种基于示踪剂的成像模式,作为核医学成像技术的无辐射替代技术,它前景广阔。核医学需要 "热化学",放射性示踪剂必须在现场合成,需要昂贵的基础设施和劳动力成本。MPI 的磁性纳米粒子--超顺磁性氧化铁纳米粒子(SPIOs)不会随着时间的推移而出现明显的信号衰减,从而消除了与 FDG-PET 等核医学研究相关的成本障碍。虽然 SPIOs 是目前行业标准的 MPI 示踪剂,但最近在合成超铁磁性氧化铁纳米粒子 (SFMIOs) 和高分辨率 SPIOs(HR-SPIOs)(一种几乎零矫顽力的新型纳米粒子)方面取得的进展使分辨率(0.4 mT)和信噪比提高了 30 倍。为了更好地了解这些新型纳米粒子的长期性能,本研究报告了 SPIO(VivoTrax Plus)、HR-SPIO 和 SFMIO 分辨率的变化,以及 SFMIO 在低温(-2、2 °C)和室温(18-22 °C)下 12 周的矫顽力。我们发现,与 SFMIO 相比,HR-SPIO 分辨率的变化对储存温度更为敏感。此外,我们还观察到,随着时间的推移,SFMIO 在两种温度下的矫顽力没有明显差异。这些结果可以为优化示踪剂合成的研究提供参考,同时也为未来的医院提供了关于示踪剂转运和储存的高度易得条件的实用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal on Magnetic Particle Imaging
International Journal on Magnetic Particle Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信