Renārs Trukša, Sergejs Fomins, Zane Jansone-Langina, Laura Tenisa
{"title":"Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests.","authors":"Renārs Trukša, Sergejs Fomins, Zane Jansone-Langina, Laura Tenisa","doi":"10.3390/vision8030053","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: in this research study, colour vision was evaluated in individuals aged 19 to 70 years with and without red-green colour vision disorders. (2) Methods: study participant colour vision was assessed with anomaloscope, HRR, FM100 hue, and CAD tests. (3) Results: No significant correlation was found between participant age and chromatic sensitivity of the red-green colour opponent channel. However, a decrease in blue-yellow colour opponent channel chromatic sensitivity was confirmed with the FM100 hue test and CAD test. Analysis of FM100 hue test error scores across age groups revealed a decline in chromatic sensitivity in the short-wave region of visible light with increasing age. Comparison of the colour-deficient individual results of the CAD and anomaloscope tests confirmed that CAD test sensitivity and specificity reaches 100%. However, some individuals with deutan-type deficits were misclassified as having protan-type deficits. This study confirmed the effectiveness of the FM100 test in identifying individuals with moderate to severe colour vision deficits, with sensitivity and specificity rates of 81.25% and 95.38%. (4) Conclusions: It was found that the FM100 hue test effectively identifies individuals with moderate and severe red-green colour vision deficiencies. On the other hand, individuals with mild colour vision deficiencies may go undetected with the FM100 hue test.</p>","PeriodicalId":36586,"journal":{"name":"Vision (Switzerland)","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vision8030053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: in this research study, colour vision was evaluated in individuals aged 19 to 70 years with and without red-green colour vision disorders. (2) Methods: study participant colour vision was assessed with anomaloscope, HRR, FM100 hue, and CAD tests. (3) Results: No significant correlation was found between participant age and chromatic sensitivity of the red-green colour opponent channel. However, a decrease in blue-yellow colour opponent channel chromatic sensitivity was confirmed with the FM100 hue test and CAD test. Analysis of FM100 hue test error scores across age groups revealed a decline in chromatic sensitivity in the short-wave region of visible light with increasing age. Comparison of the colour-deficient individual results of the CAD and anomaloscope tests confirmed that CAD test sensitivity and specificity reaches 100%. However, some individuals with deutan-type deficits were misclassified as having protan-type deficits. This study confirmed the effectiveness of the FM100 test in identifying individuals with moderate to severe colour vision deficits, with sensitivity and specificity rates of 81.25% and 95.38%. (4) Conclusions: It was found that the FM100 hue test effectively identifies individuals with moderate and severe red-green colour vision deficiencies. On the other hand, individuals with mild colour vision deficiencies may go undetected with the FM100 hue test.