CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing.

Q3 Medicine
遗传 Pub Date : 2024-09-01 DOI:10.16288/j.yczz.24-124
Sen Yang, Bao-Xia Ma, Hong-Run Qian, Jie-Yu Cui, Xiao-Jun Zhang, Li-da Li, Ze-Hui Wei, Zhi-Ying Zhang, Jian-Gang Wang, Kun Xu
{"title":"CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing.","authors":"Sen Yang, Bao-Xia Ma, Hong-Run Qian, Jie-Yu Cui, Xiao-Jun Zhang, Li-da Li, Ze-Hui Wei, Zhi-Ying Zhang, Jian-Gang Wang, Kun Xu","doi":"10.16288/j.yczz.24-124","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and <i>in vivo</i> delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from <i>Staphylococcus lugdunensis</i> and AsCas12a derived from <i>Acidaminococcus</i> sp<i>.</i> Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for <i>EMX1, NUDT5</i> and <i>AAVS1</i> gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 9","pages":"716-726"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.

基于小型化 Cas 蛋白的 CRISPR/Gal4BD-Cas 供体适配系统,用于改进基因编辑。
基于同源定向修复(HDR)的基因编辑策略可以在哺乳动物细胞中实现靶向精确点编辑和基因敲入。然而,HDR 策略的低效率严重制约了其在精准医学和分子设计育种中的应用。鉴于在使用 HDR 策略进行基因编辑时,外源供体 DNA 无法在双链断裂(DSB)处有效地自主招募,人们提出了供体适配系统(DAS)的概念,并开发了 CRISPR/Cas9-Gal4BD DAS。由于SpCas9蛋白体积较大,其与Gal4BD适配体融合后不便于蛋白表达、病毒载体包装和体内递送。本研究利用两种小型化的Cas蛋白,即来源于卢格杜氏葡萄球菌的SlugCas9-HF和来源于酸性球菌的AsCas12a,进一步开发了两种新型的CRISPR/Gal4BD-SlugCas9和CRISPR/Gal4BD-AsCas12a DAS。结果表明,Gal4BD 与 SlugCas9 和 AsCas12a N 端融合对其活性的影响极小。其次,为验证两种DAS的功能,进行了HDR效率报告实验,并同时优化了相应的供体模式。结果表明,在CRISPR/Gal4BD-AsCas12a DAS中,意向dsDNA模板5'端融合Gal4BD适配体结合序列(BS-dsDNA)的效果更好;而在CRISPR/Gal4BD-SlugCas9 DAS中,推荐使用dsDNA-BS供体模式。最后,利用CRISPR/Gal4BD-SlugCas9 DAS在HEK293T细胞中对EMX1、NUDT5和AAVS1基因位点的基因编辑效率分别达到24%、37%和31%,与对照组相比显著提高。总之,本研究为后续供体适配系统的优化提供了参考,为动物分子设计育种研究拓展了基因编辑技术工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信