{"title":"Synthesis, characterization, and physico-chemical aspects of a new PVC-based quaternary triethanol ammonium chloride anionite for tungsten recovery.","authors":"Bahig Atia","doi":"10.55730/1300-0527.3678","DOIUrl":null,"url":null,"abstract":"<p><p>The usability of polyvinyl chloride-based quaternary triethanol ammonium chloride anionite (PVC-TEAC) as a potential extractant for tungstate was investigated to recover tungstate from Gabal Qash Amir, Egypt, assaying 70.91% WO<sub>3</sub>. Structure elucidation for PVC-TEAC anionite was successfully carried out using several techniques. Experimental measurements, such as pH, agitation time, initial tungsten concentration, anionite dose, co-ions, temperature, and eluting agents, have been optimized. It was found that PVC-TEAC anionite has a maximum capacity of 63 mg per gram. From the distribution isotherm modeling, Langmuir's model fits the experimental results better than Freundlich's, with a theoretical value of 61.728 mg g<sup>-1</sup>. According to kinetic modeling, the first- and second-order modeling may be regarded as a mixed modeling for a successful adsorption system. Thermodynamic prospects reveal that the adsorption process was predicted as an exothermic, spontaneous, and preferable adsorption at low temperatures. Tungsten ions can be eluted from the loaded anionite, by 1M H<sub>2</sub>SO<sub>4</sub> with a 97% efficiency rate. It was found that PVC-TEAC anionite reveals good separation factor (S.F.) towards most of co-ions. A successful Alkali fusion with NaOH flux followed by tungstate recovery by PVC-TEAC anionite is used to obtain a high-purity tungsten oxide concentrate (WO<sub>3</sub>), with a tungsten content of 78.3% and a purity of 98.75%.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"524-549"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3678","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The usability of polyvinyl chloride-based quaternary triethanol ammonium chloride anionite (PVC-TEAC) as a potential extractant for tungstate was investigated to recover tungstate from Gabal Qash Amir, Egypt, assaying 70.91% WO3. Structure elucidation for PVC-TEAC anionite was successfully carried out using several techniques. Experimental measurements, such as pH, agitation time, initial tungsten concentration, anionite dose, co-ions, temperature, and eluting agents, have been optimized. It was found that PVC-TEAC anionite has a maximum capacity of 63 mg per gram. From the distribution isotherm modeling, Langmuir's model fits the experimental results better than Freundlich's, with a theoretical value of 61.728 mg g-1. According to kinetic modeling, the first- and second-order modeling may be regarded as a mixed modeling for a successful adsorption system. Thermodynamic prospects reveal that the adsorption process was predicted as an exothermic, spontaneous, and preferable adsorption at low temperatures. Tungsten ions can be eluted from the loaded anionite, by 1M H2SO4 with a 97% efficiency rate. It was found that PVC-TEAC anionite reveals good separation factor (S.F.) towards most of co-ions. A successful Alkali fusion with NaOH flux followed by tungstate recovery by PVC-TEAC anionite is used to obtain a high-purity tungsten oxide concentrate (WO3), with a tungsten content of 78.3% and a purity of 98.75%.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.